首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synaptonemal complexes (SCs) were found in stage 3, premeiotic (S phase) pollen mother cell (PMC) nuclei of wheat which were labeled with 3H-thymidine. Three nucleoli are present in PMC nuclei at the beginning of stage 3, premeiotic interphase (S3). During S3, nucleoli move toward the nuclear envelope and fuse to form one nucleolus near the end of the stage. PMC nuclei labeled with 3H-thymidine were serially sectioned to show that more than one nucleolus was present and that SCs were also present in these DNA synthetic nuclei. Entire S3 PMC nuclei were serially sectioned to show the presence of SCs and all three nucleoli. Entire leptotene nuclei were also serially sectioned and segments of SCs were found. It is concluded that the association of homologous chromosomes in S3 of wheat is an early step in SC formation which proceeds through leptotene and is completed in zygotene and pachytene. Thus there is evidence that the continuum of chromosome pairing in wheat starts much earlier than was once thought.  相似文献   

2.
An ultrastructural study has been made of spermatogenesis in two species of primitive spiders having holocentric chromosomes (Dysdera crocata, XO and Segestria florentia X1X2O). Analysis of the meiotic prophase shows a scarcity or absence of typical leptotene to pachytene stages. Only in D. crocata have synaptonemal complex (SC) remnants been seen, and these occurred in nuclei with an extreme chromatin decondensation. In both species typical early prophase stages have been replaced by nuclei lacking SC and with their chromatin almost completely decondensed, constituting a long and well-defined diffuse stage. Only nucleoli and the condensed sex chromosomes can be identified. — In S. florentina paired non-homologous sex chromosomes lack a junction lamina and thus clearly differ from the sex chromosomes of more evolved spiders with an X1X2O male sex determination mechanism. In the same species, sex chromosomes can be recognized during metaphase I due to their special structural details, while in D. crocata the X chromosome is not distinguishable from the autosomes at this stage. — The diffuse stage and particularly the structural characteristics of the sex chromosomes during meiotic prophase are reviewed and discussed in relation to the meiotic process in other arachnid groups.  相似文献   

3.
Denise Zickler 《Chromosoma》1977,61(4):289-316
Complete reconstruction of seven leptotene, six zygotene, three pachytene and three diplotene nuclei has permitted to follow the pairing process in the Ascomycete Sordaria macrospora. The seven bivalents in Sordaria can be identified by their length. The lateral components of the synaptonemal complexes (SC) are formed just after karyogamy but are discontinuous at early leptotene. Their ends are evenly distributed on the nuclear envelope. The homologous chromosomes alignment occurs at late leptotene before SC formation. The precise pairing starts when a distance of 200–300 nm is reached. Each bivalent has several independent central component initiation sites with preferentially pairing starting near the nuclear envelope. These sites are located in a constant position along the different bivalents in the 6 observed nuclei. The seven bivalents are not synchronous either in the process of alignment or in SC formation: the small chromosomes are paired first. At pachytene the SC is completed in each of the 7 bivalents. Six bivalents have one fixed and one randomly attached telomeres. The fixed end of the nucleolar organizer is the nucleolus anchored end. At diffuse stage and diplotene, only small stretches of the SC are preserved. The lateral components increase in length is approximately 34% between leptotene and pachytene. Their lengths remain constant during pachytene. From zygotene to diplotene the central components contain local thickenings (nodules). At late zygotene and pachytene each bivalent has 1 to 4 nodules and the location of at least one is constant. The total number of nodules remains constant from pachytene to diplotene and is equal to the mean total number of chiasmata. The observations provide additional insight into meiotic processes such as chromosome movements, initiation and development of the pairing sites during zygotene, the existence of fixed telomeres, the variations in SC length. The correspondence between nodules and chiasmata are discussed.  相似文献   

4.
Various aspects of premeiosis and meiosis in Lilium Enchantment are described. There was evidence of a premeiotic slow-down but no cells in premeiotic despiralization were observed. A relationship was found between sequence of bud development, or reproductive age of the individual, and degree of preleptotene chromosome contraction. The sequence of development of microsporocytes in the anther differed from the apex-to-base order previously reported in Lilium and, in contrast to observations in L. longiflorum cultivars, the maximum degree of preleptotene contraction was found in basal, last developing microsporocytes. Delayed despiralization of telophase nuclei was observed. There were extremely rare cells in meiotic division in anthers in which all other archesporial cells had not yet reached premeiotic interphase. Extreme variation was observed among anthers in proportions of microsporocytes in mid-stages of meiosis as well as in preleptotene contraction. These observations are discussed in relation to meiosis readiness, meiotic behavior in early and late developing regions of reproductive organs and in aging individuals, synchrony of meiotic development and rates of meiotic division.  相似文献   

5.
Meiotic prophase in Sordaria humana has been analyzed by three-dimensional reconstructions of 3 leptotene, 2 zygotene, 10 pachytene and 3 diplotene nuclei. Several notable features emerged. The lateral components of the synaptonemal complexes (SC) are hollow tubes which show dilations of variable sizes from late leptotene to early diplotene. These bulges occur before pairing. Their number decreases as soon as the SC are completely formed, but their mean size increases. Bulges can be present in all parts of the lateral components including telomeres and nucleolar organizer region, but their distribution along bivalents is not random. The remarkably uniform width of the SC central region, normally observed in other species is not observed in S. humana. Although as a general rule the bulges rarely affect the homologous components at identical sites, they often either fill or partially cover the central region. The recombination nodules are not clearly connected with the bulges. This work provides also additional insight into the development of both SC and the nodules. At late leptotene, the homologues are aligned before SC formation. One case of interlocking has been observed at early pachytene. Nodules are present from zygotene to diplotene. They are not evenly distributed along the bivalents during pachytene. The mean number of nodules, constant from late pachytene to diplotene, is equal to the mean number of chiasmata.  相似文献   

6.
Summary The premeiotic and meiotic stages are described in the pollen mother cells of the liliaceous plant Eremurus. In human oocytes from embryonic ovaries, the premeiotic and early meiotic stages up to dictyotene have been identified on morphological grounds. In Eremurus, in which each stage can be independently verified by the sequence of buds situated in a spiral, there is no indication of somatic pairing of homologous chromosomes, nor is there any sign of a premeiotic contraction of the chromosomes. The interphase following this mitosis is, in turn, succeeded by leptotene in which the DNA synthesis occurs, as determined by using autoradiography. This stage is followed by a distance pairing stage in which the homologous chromosomes lie parallel to each other at a distance. In typical zygotene, segments of chromosomes are paired intimately, others are unpaired, and the points at which pairing begins and ends are clearly visible. Each bivalent shows several pairing blocks. Pairing is completed at pachytene; diplotene which is characterized by the separation of the chromosomes follows. In middiplotene the chromosomes collect together in the so-called second contraction stage.The same meiotic prophase stages that occur in Eremurus, including the distance pairing stage, are found in the embryonic human oocytes. In the last premeiotic interphase, the chromosomes appear as condensed prochromosomes which unravel directly to form the leptotene chromosomes. In the oocytes, too, DNA synthesis seems to take place in leptotene.This is publication No. 1947 from the Genetics Laboratory, University of Wisconsin. It has been aided by the following grants from the National Institutes of Health (Washington): GM 15 422 and HD 03 084-03. For excellent photographic help we are grateful to Mr. Walter Kugler, Jr.  相似文献   

7.
Variation in chromosome number due to polyploidy can seriously compromise meiotic stability. In autopolyploids, the presence of more than two homologous chromosomes may result in complex pairing patterns and subsequent anomalous chromosome segregation. In this context, chromocenter, centromeric, telomeric and ribosomal DNA locus topology and DNA methylation patterns were investigated in the natural autotetraploid, Arabidopsis arenosa. The data show that homologous chromosome recognition and association initiates at telomeric domains in premeiotic interphase, followed by quadrivalent pairing of ribosomal 45S RNA gene loci (known as NORs) at leptotene. On the other hand, centromeric regions at early leptotene show pairwise associations rather than associations in fours. These pairwise associations are maintained throughout prophase I, and therefore likely to be related to the diploid-like behavior of A. arenosa chromosomes at metaphase I, where only bivalents are observed. In anthers, both cells at somatic interphase as well as at premeiotic interphase show 5-methylcytosine (5-mC) dispersed throughout the nucleus, contrasting with a preferential co-localization with chromocenters observed in vegetative nuclei. These results show for the first time that nuclear distribution patterns of 5-mC are simultaneously reshuffled in meiocytes and anther somatic cells. During prophase I, 5-mC is detected in extended chromatin fibers and chromocenters but interestingly is excluded from the NORs what correlates with the pairing pattern.  相似文献   

8.
Preleptotene chromosome contraction in Lilium longiflorum “Croft”   总被引:1,自引:1,他引:0  
A period of chromosome contraction between premeiotic interphase and leptotene was regularly observed in three samples of Lilium longiflorum Croft. Extensive preleptotene chromosome contraction was also observed in L. longiflorum Ace and in the Lilium hybrid Enchantment. Although the stage resembles late mitotic prophase, microsporocytes never develop to metaphase, but despiralize to leptotene, and regular alignment, pairing and chiasma formation follow. As preleptotene chromosome contraction is discovered in an increasing number of organisms it becomes less likely that it represents a true reversion to mitosis. However its absence in many organisms and its extreme variability in others do not support the concept of preleptotene chromosome contraction as a regular meiotic stage. It is suggested that the line of demarcation between mitosis and meiosis is often imprecise, and meiocytes may fluctuate to some extent between these states before a final transition to meiosis is made. The occurrence and extent of this fluctuation may possibly be related to some externally produced substances required for the orderly development of meiotic prophase.  相似文献   

9.
Aedes aegypti spermatocytes were reconstructed from electron micrographs. The species has tight somatic pairing of the chromosomes, and there are therefore no classical leptotene and zygotene stages, but rather a gradual transition from somatic pairing to meiotic pairing (= pachytene). The term prepachytene has been used for the transitory stage. The first visible sign of impending meiosis was a reorganization of the chromatin, which resulted in the formation of spaces (synaptic spaces) in the chromatin, about the width of the synaptonemal complexes (SCs). Diffuse material, possibly precursor material for the SC, was present in the spaces. Later short pieces of complex were formed throughout the nucleus. Late prepachytene, pachytene, and diplotene complexes were reconstructed. Each chromosome occupied a separate region of the nucleus. The complexes became progressively shorter from prepachytene (maximum complement length 289 m) to diplotene (175 m). The thickness of the SCs increased from prepachytene to pachytene and probably decreased again during diplotene. At the beginning of diplotene the lateral elements (LEs) separated, and the single LEs became two to three times thicker than the LEs of the SC. The centromeres were at all stages attached to the nuclear membrane, whereas the telomeres were free in the nucleoplasm during pachytene and diplotene. A heterochromatic marker was present on chromosome 1 near the sex determining locus, and a diffuse marker on chromosome 3 near the nucleolus organizer region. After breakdown of the complexes, polycomplexes were present in the nucleus.  相似文献   

10.

Key message

Exposure of wheat to high temperatures during male meiosis prevents normal meiotic progression and reduces grain number. We define a temperature-sensitive period and link heat tolerance to chromosome 5D.

Abstract

This study assesses the effects of heat on meiotic progression and grain number in hexaploid wheat (Triticum aestivum L. var. Chinese Spring), defines a heat-sensitive stage and evaluates the role of chromosome 5D in heat tolerance. Plants were exposed to high temperatures (30 or 35 °C) in a controlled environment room for 20-h periods during meiosis and the premeiotic interphase just prior to meiosis. Examination of pollen mother cells (PMCs) from immature anthers immediately before and after heat treatment enabled precise identification of the developmental phases being exposed to heat. A temperature-sensitive period was defined, lasting from premeiotic interphase to late leptotene, during which heat can prevent PMCs from progressing through meiosis. PMCs exposed to 35 °C were less likely to progress than those exposed to 30 °C. Grain number per spike was reduced at 30 °C, and reduced even further at 35 °C. Chinese Spring nullisomic 5D-tetrasomic 5B (N5DT5B) plants, which lack chromosome 5D, were more susceptible to heat during premeiosis–leptotene than Chinese Spring plants with the normal (euploid) chromosome complement. The proportion of plants with PMCs progressing through meiosis after heat treatment was lower for N5DT5B plants than for euploids, but the difference was not significant. However, following exposure to 30 °C, in euploid plants grain number was reduced (though not significantly), whereas in N5DT5B plants the reduction was highly significant. After exposure to 35 °C, the reduction in grain number was highly significant for both genotypes. Implications of these findings for the breeding of thermotolerant wheat are discussed.
  相似文献   

11.
The recessive meiotic mutant spo44 of Sordaria macrospora, with 90% ascospore abortion, exhibits striking effects on recombination (67% decrease), irregular segregation of the almost unpaired homologues, and a decrease in chiasma frequency in the few cases where bivalents are formed. Three-dimensional reconstructions of ten prophase nuclei indicate that pairing, as judged by the absence of fully formed synaptonemal complexes (SC), is not achieved although lateral elements (LE) assemble. The pairing failure is attributable to defects in the alignment of homologous chromosomes. The leptotene alignment seen in the wild type before SC formation was not observed in the spo44 nuclei. Dense material, considered to be precursor of SC central elements, was found scattered among the LE in two nuclei. The behaviour of spo44 substantiates the hypothesis that chromosome matching and SC formation are separable events. — The total length of the LE in the mutant is the same as in the wild type, but due to variable numbers and length of the individual LE, homologues cannot be lined up. Light microscopic observations indicate that the irregular length and number of LE is due to extensive chromosome breakage. The wild-type function corresponding to spo44 is required for both LE integrity and chromosome matching. Reconstructions of heterozygous nuclei reveal the presence of a supernumerary nucleolar organizer in one arm of chromosome 7. It is suggested that rDNA has been inserted into a gene whose function is involved in pairing or into a controlling sequence that interacts with the pairing process.  相似文献   

12.
A thread-like (more than 70 cm long) testis of Ascaris suum, when examined under the light and electron microscope, reveals the linear succession of meiotic stages. Beginning from, at least, late leptotene, the spermatocytes are synchronous in their development. Thus within each transverse section of the testis all the spermatocytes are in the same stage. The spermatocytes at each stage of prophase I occupies several (4 to 10) cm of the whole testis length. — At leptotene, synaptonemal-like polycomplexes of lateral and central stacked elements are formed in the cytoplasm of spermatocytes. At late leptotene, the polycomplexes are attached to the external nuclear membrane. The polycomplexes disappear at zygotene. Slightly discernable axial cores are observed in the late leptotene chromosomes. The synaptonemal complexes (SCs) are formed at the zygotene stage, their structure being characteristically tripartite. The SCs disappear from the nuclei at the diffuse stage of prophase I. In other organisms completely developed polycomplexes of stacked lateral and central elements were never found during the presynaptic period of meiosis, although single or two parallel layers of aggregated central regions of SC were found in Neottiella meiocytes at the stage prior to chromosome pairing (Westergaard and von Wettstein, 1970, 1972). — First appearance of the polycomplexes in the cytoplasm insetead of the nucleus is also a novel fact. It is concluded that the polycomplexes at leptotene are formed by a self-assembly of the SC molecular material precociously synthesized in the cytoplasm. Two hypotheses regarding possible function and the further fate for leptotene polycomplexes are discussed.  相似文献   

13.
Post pachytene stages of meiotic prophase in males of Ascaris suum have been analyzed with the electron microscope. No synaptonemal-like polycomplexes (PCs) have been observed in the nucleoplasm or cytoplasm during the period from pachytene to diakinesis. From Serially sectioned diplotene nuclei it was found that the bivalents are located near the periphery of the nuclei, the central part of the nuclei being vacant. Each nucleus contains one nucleolus. Up to 1 m long stretches of unpaired lateral elements (LEs) are found in some of the diplotene bivalents. These LEs are morphologically similar to unpaired LEs in early zygotene nuclei. Partial 3-dimensional reconstruction of two nuclei shows that the bivalents contain some small stretches of synaptonemal complex (SC) up to 1.9 m long. Some bivalents at diakinesis show remnants of SCs. At this stage chromosomes are fibrous, condensed, attached to the nuclear envelope and mostly with a rounded profile in cross section. The synchronous development of the spermatocytes and small bivalents at diplotene in A. suum make this system a good object for the study of localization of SC remnants.  相似文献   

14.
A period of chromosome spiralization and contraction was observed between premeiotic interphase and leptotene in Lilium longiflorum Croft. There was variation in the extent of preleptotene spiralization and contraction of chromosomes among microsporocytes, anthers and buds. The chromosomes sometimes contracted sufficiently to be visible as separate entities. It could then be determined that the chromosomes were single and entirely separate; synapsis and crossing-over had not yet occurred. Furthermore there was no evidence of alignment or association of homologues during the preleptotene contraction period; the chromosomes appeared to be distributed at random. The chromosomes subsequently elongated into the leptotene stage. Wherever they were visible separately the chromosomes were single in early leptotene. These observations support the classical view that synapsis of homologous chromosomes takes place during zygotene, followed by crossing-over at pachytene.It is a pleasure to dedicate this paper to Dr. Sally Hughes-Schrader on the occasion of her seventy-fifth birthday.  相似文献   

15.
It is proposed that anthers of Lilium longiflorum Croft approaching the end of premeiotic mitosis reach a state described as meiosis readiness after which cells in premeiotic prophase are unable to complete a mitotic division but despiralize to interphase and enter a meiotic division. Many of the laggard premeiotic cells begin despiralization before reaching an extremely contracted state of late prophase. Premeiotic despiralization is not, therefore, attributed to a deficiency in metaphase but to an inability of these cells to complete prophase. Premeiotic despiralization appears to be preceded by a slowing-down of prophase development. There is variation among anthers and anther regions in the onset of prophase retardation and meiosis readiness. It is suggested that meiosis readiness depends upon a gradual accumulation of meiosis-inducing substances in the cytoplasm of the premeiotic cells. It has not been determined whether the cells that undergo premeiotic despiralization give rise to the giant microsporocytes with shattered chromosomes observed at late prophase of meiosis.  相似文献   

16.
It has been shown by means of double wavelength cytophotometry of DNA (Feulgen reaction) and histone (fast green, pH 8.2) inTriturus vulgaris spermatocytes that the doubling of DNA content in nuclei terminates at the end of preleptotene to beginning of leptotene whereas the doubling of histone content begun at premeiotic interphase is delayed and proceeds till the end of leptotene to beginning of zygotene. As a result preleptotene spermatocytes contain approximately 4C DNA and only 3C histone. Histone content in leptotene amounts to 93% of 4C, and in zygotene, pachytene and metaphase I both DNA and histone contents equal 4C. Thus, the temporal pattern of nucleo-histone doubling in meiotic chromosomes ofT. vulgaris differs from the synchronous DNA and histone doubling in mitotic chromosomes of all previously studied species. The delay of histone doubling inT. vulgaris meiocytes is less pronounced than in the previously studied insectsAcheta domestica andPyrrhocoris apterus where the histone content amounts to 3C in leptotene—zygotene and the equal histone/DNA ratio is restored only in pachytene.—Responsibilities for this phenomenon and its biolgoical sinnificance are discussed in connection with recent hypotheses concerning mechanisms of homologous chromosome pairing.  相似文献   

17.
The Ph1 locus in wheat influences homo(eo)logous chromosome pairing. We have analysed its effect on the behaviour and morphology of two 5RL rye telosomes in a wheat background, by genomic in situ hybridisation (GISH), using rye genomic DNA as a probe. Our main objective was to study the effect of different alleles of the Ph1 locus on the morphology and behaviour of the rye telosomes in interphase nuclei of tapetal cells and in pollen mother cells at early stages of meiosis. The telosomes, easily detectable at all stages, showed a brightly fluorescing chromomere in the distal region and a constriction in the proximal part. These diagnostic markers enabled us to define the centromere and telomere regions of the rye telosomes. In the presence of functional copies of Ph1, the rye telosomes associated at pre-leptotene, disjoined and reorganised their shape at leptotene, and became fully homologously paired at zygotene – pachytene. In plants without functional alleles (ph1bph1b), the rye telosomes displayed an aberrant morphology, their premeiotic associations were clearly disturbed and their pairing during zygotene and pachytene was reduced and irregular. The Ph1 locus also influenced the behaviour of rye telosomes in the interphase nuclei of tapetal cells: in Ph1Ph1 plants, the rye telosomes occupied distinct, parallel-oriented domains, whereas in tapetal nuclei of ph1bph1b plants they were intermingled with wheat chromosomes and showed a heavily distorted morphology. The results shed new light on the effect of Ph1, and suggest that this locus is involved in chromosome condensation and/or scaffold organisation. Our explanation might account for various apparently contradictory and pleiotropic effects of this locus on both premeiotic associations of homologues, the regulation of meiotic homo(eo)logous chromosome pairing and synapsis, the resolution of bivalent interlockings and centromere behaviour. Received: 27 April 1998; in revised form: 5 August 1998 / Accepted: 11 August 1998  相似文献   

18.
Anthers of Lilium candidum L. were cultivated on artificial media containing labelled amino acids. Histones were isolated from meiocytes and fractionated by the use of polyacrylamide gel electrophoresis (PAGE). Total histone synthesis was found not to terminate at the end of premeiotic interphase but to continue until at least zygotene. However, the rate of synthesis was reduced during prophase I compared to interphase. Separate fractions were synthesized asynchronously during the period from late interphase to zygotene. Tissue specific histone of meiosis (FM) was synthesized during late interphase and leptotene.Dedicated to Professor A. A. Prokofieva-Belgovskaia on the occasion of the seventieth anniversary of her birthday.  相似文献   

19.
We have analyzed the progressive changes in the spatial distribution of telomeres during meiosis using three-dimensional, high resolution fluorescence microscopy. Fixed meiotic cells of maize (Zea mays L.) were subjected to in situ hybridization under conditions that preserved chromosome structure, allowing identification of stage-dependent changes in telomere arrangements. We found that nuclei at the last somatic prophase before meiosis exhibit a nonrandom, polarized chromosome organization resulting in a loose grouping of telomeres. Quantitative measurements on the spatial arrangements of telomeres revealed that, as cells passed through premeiotic interphase and into leptotene, there was an increase in the frequency of large telomere-to-telomere distances and a decrease in the bias toward peripheral localization of telomeres. By leptotene, there was no obvious evidence of telomere grouping, and the large, singular nucleolus was internally located, nearly concentric with the nucleus. At the end of leptotene, telomeres clustered de novo at the nuclear periphery, coincident with a displacement of the nucleolus to one side. The telomere cluster persisted throughout zygotene and into early pachytene. The nucleolus was adjacent to the cluster at zygotene. At the pachytene stage, telomeres rearranged again by dispersing throughout the nuclear periphery. The stagedependent changes in telomere arrangements are suggestive of specific, active telomere-associated motility processes with meiotic functions. Thus, the formation of the cluster itself is an early event in the nuclear reorganizations associated with meiosis and may reflect a control point in the initiation of synapsis or crossing over.  相似文献   

20.
Meiosis has been studied in partially fertile wheat–rye F1 hybrids yielded by crosses Triticum aestivum (Saratovskaya 29 variety) × Secale cereale L. (Onokhoiskaya variety) (4x =28). Hybrid self-fertility proved to be caused by formation of restituted nuclei, which appear after equational segregation of univalent chromosome in AI and sister chromatid non-separation in AII of meiosis, as well as after AI blockage in three different ways. Both types of meiotic restitution were found in each hybrid plant. Expression of the meiotic restitution trait varied significantly in polyhaploids of the same genotype (ears of the same plants, anthers of the same ear, microsporocytes of the same anther). Chromatin condensation in prophase proved to be related to the division type and univalent segregation in AI. During reduction segregation of univalents in AI, sister chromatid cohesion and chromosome supercondensation remained unchanged. The results obtained suggest that in the remote hybrids with haploid karyotype of the parental origin (polyhaploids), the program of two-stage meiosis may be fundamentally transformed to ensure one instead of two divisions. We propose that meiotic restitution is a result of special genetic regulation of the kinetochore organization (both structural and functional) and chromatin condensation, i.e. of major meiotic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号