首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The release of hydrogen cyanide (HCN) from preformed cyanogenic compounds in plants such as sorghum is thought to provide a protective barrier against infection by microorganisms. Gloeocercospora sorghi, a fungal pathogen of sorghum, produces the enzyme cyanide hydratase (CHT) which converts HCN to the less toxic compound formamide. There is considerable prior evidence indicating that this mechanism for detoxifying HCN plays an important role in the pathogenicity of G. sorghi on sorghum. In the present study, the CHT gene was made nonfunctional in G. sorghi through transformation-mediated gene disruption. The transformant lacked CHT activity and no reacting polypeptides were detected with CHT-specific antibodies. This CHT mutant was highly sensitive to HCN, confirming that CHT is an HCN detoxifying mechanism, but it retained virulence on sorghum, causing lesions indistinguishable from those caused by the wild-type strain. This result indicates that G. sorghi does not require CHT for pathogenicity on cyanogenic lines of sorghum and suggests that cyanogenic compounds in plants may serve functions other than providing a mechanism of disease resistance.  相似文献   

2.
Previous studies have demonstrated that fungal pathogens of cyanogenic plants produce cyanide hydratase (CHT, EC 4.2.1.66), which converts HCN to formamide. Production of CHT in these fungi is thought to be a means of circumventing cyanide toxicity, and CHT is thus believed to be an important pathogenicity trait. In the present study, 13 species of fungi were assayed for CHT production, and all 7 species that were pathogens of sorghum, a cyanogenic plant, produced this enzyme. CHT was purified to apparent homogeneity from one of these sorghum pathogens, Gloeocercospora sorghi. The enzyme had a Km of 12 mM for KCN. Enzymatically functional CHT was obtained only as a large molecular entity of greater than 300 kDa. However, a polypeptide of approximately 45 kDa was identified as the only component of purified CHT detectable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 45-kDa polypeptide band could be resolved into three isozymes of pI 6.1, 6.3, and 6.5. Antibodies raised against the 45-kDa polypeptide inhibited the G. sorghi CHT activity and showed high specificity in Western blots to a polypeptide of approximately the same size. The evidence suggests that functional G. sorghi CHT is an aggregated protein that consists of 45-kDa polypeptides. A CHT with similar properties was also found in the fungus Colletotrichum graminicola, another pathogen of sorghum.  相似文献   

3.
Genome mining of cyanide-degrading nitrilases from filamentous fungi   总被引:1,自引:1,他引:0  
A variety of fungal species are known to degrade cyanide through the action of cyanide hydratases, a specialized subset of nitrilases which hydrolyze cyanide to formamide. In this paper, we report on two previously unknown and uncharacterized cyanide hydratases from Neurospora crassa and Aspergillus nidulans. Recombinant forms of four cyanide hydratases from N. crassa, A. nidulans, Gibberella zeae, and Gloeocercospora sorghi were prepared after their genes were cloned with N-terminal hexahistidine purification tags, expressed in Escherichia coli, and purified using immobilized metal affinity chromatography. These enzymes were compared according to their relative specific activity, pH activity profiles, thermal stability, and ability to remediate cyanide contaminated waste water from silver and copper electroplating baths. Although all four were similar, the N. crassa cyanide hydratase (CHT) has the greatest thermal stability and widest pH range of >50% activity. N. crassa also demonstrated the highest rate of cyanide degradation in the presence of both heavy metals. The CHT of A. nidulans has the highest reaction rate of the four fungal nitrilases evaluated in this work. These data will help determine optimization procedures for the possible use of these enzymes in the bioremediation of cyanide-containing waste. Similar to known plant pathogenic fungi, both N. crassa and A. nidulans were induced to express CHT by growth in the presence of KCN.  相似文献   

4.
A recombinant plasmid, pMLY12-1, screened from a Peronosclerospora sorghi library hybridizes only to DNA of P. sorghi, or to DNA from leaves infected with P. sorghi, not to DNA of P. sorghi Thailand isolate, P. philippinensis, P. sacchari, or P. maydis. The terminal sequences of the 1.3-kb insert, which appears to contain mitochondrial DNA, are 85% A and T. No polymorphisms were detected when the probe was hybridized to Southern blots containing DNA from P. sorghi pathotype 1, pathotype 3, or a Botswana isolate digested with any of the eight restriction endonucleases tested. The banding patterns were the same whether DNA was extracted directly from the fungus or from infected leaves.  相似文献   

5.
A recombinant plasmid, pMLY12-1, screened from a Peronosclerospora sorghi library hybridizes only to DNA of P. sorghi, or to DNA from leaves infected with P. sorghi, not to DNA of P. sorghi Thailand isolate, P. philippinensis, P. sacchari, or P. maydis. The terminal sequences of the 1.3-kb insert, which appears to contain mitochondrial DNA, are 85% A and T. No polymorphisms were detected when the probe was hybridized to Southern blots containing DNA from P. sorghi pathotype 1, pathotype 3, or a Botswana isolate digested with any of the eight restriction endonucleases tested. The banding patterns were the same whether DNA was extracted directly from the fungus or from infected leaves.  相似文献   

6.
On the basis of Escherichia coli DNA and vectors pBR322, pUC19, hybrid plasmids restoring Udp+ phenotype in the E. coli deletion (delta udp) mutant have been obtained. The udp gene is carried by a 8 kb PstI fragment (on the pUD2) and by a smaller 2.87 kb PstI-SalGI fragment from the PstI fragment (pUD7). The uridine phosphorylase level was 30 times higher in the cells containing hybrid plasmid as compared to the strain with chromosomal location of the udp gene. On the other hand, the measurements of uridine phosphorylase activity in the cytR- and cya- background indicate that expression of the cloned udp gene escapes partially negative control of the CytR repressor and positive control of cAMP--CRP complex. These data suggest that the 2.87 kb PstI--SalGI-fragment contains the intact udp gene which is transcribed from its own promoter. Increase in the activity of beta-galactosidase encoded by udp-lacZ fusion has been observed in the presence of pUD2 or pUD7, which was suggested to be the consequence of titration of CytR repressor molecules in the operator region of the cloned udp.  相似文献   

7.
8.
The Candida albicans genome encodes four chitinases, CHT1, CHT2, CHT3 and CHT4. All four C. albicans chitinase-encoding genes are non-essential. The corresponding proteins belong to two groups in which Cht1, Cht2 and Cht3 are more similar to Saccharomyces cerevisiae Cts1, while Cht4 is more similar to ScCts2. In the filamentous fungus Ashbya gossypii, a CTS2 homolog (ACL166w) was identified as the sole chitinase gene. The AgCts2 is 490 aa in Length and shows 42.3% overall identity to ScCts2 (511 aa) and 33.2% identity to CaCht4 (388 aa). The A. gossypii cts2 deletion mutant showed no growth retardation or vegetative morphogenetic defects. However, upon sporulation Agcts2 mutants revealed a defect in spore formation. Expression of AgCts2 using a lacZ reporter gene was only found in the centre of a mycelium corresponding to the sporogenous part of a colony. The mutant spore phenotype of Agcts2 could be complemented by either AgCTS2, the S. cerevisiae CTS2, or the C. albicans CHT4 gene when expressed by either the AgCTS2 or the AgTEF1 promoter.  相似文献   

9.
以短短小芽孢杆菌B15的总DNA为模板,利用PCR技术克隆到其细胞壁蛋白基因串联启动子和信号肽编码序列,测序分析后提交GenBank,登录号为AY956423。重新设计引物扩增该片段并在PCR产物两侧引入BamHⅠ和PstⅠ酶切位点,将PCR产物双酶切后克隆至穿梭载体pP43NMK的相应位点构建分泌表达载体pP15MK,插入片段置于该载体中mpd基因的上游,并使信号肽编码序列与去除了自身信号肽编码序列的mpd基因阅读框恰好融合。将pP15MK导入枯草杆菌构建表达菌株1A751(pP15MK),在短短小芽孢杆菌启动子和信号肽元件的带动下,mpd基因能够在表达菌株的对数生长期和稳定期持续性高效分泌表达,表达产物结合在细胞膜上;发酵液在48h酶活达到最高值7.79U/mL,是出发菌株邻单胞菌M6表达量的8.1倍。  相似文献   

10.
To construct a high-density molecular linkage map of Italian ryegrass (Lolium multiflorum Lam), we used a two-way pseudo-testcross F1 population consisting of 82 individuals to analyze three types of markers: restriction fragment length polymorphism markers, which we detected by using genomic probes from Italian ryegrass as well as heterologous anchor probes from other species belonging to the Poaceae family, amplified fragment length polymorphism markers, which we detected by using PstI/MseI primer combinations, and telomeric repeat associated sequence markers. Of the restriction fragment length polymorphism probes that we generated from a PstI genomic library, 74% (239 of 323) of randomly selected probes detected hybridization patterns consistent with single-copy or low-copy genetic locus status in the screening. The 385 (mostly restriction fragment length polymorphism) markers that we selected from the 1226 original markers were grouped into seven linkage groups. The maps cover 1244.4 cM, with an average of 3.7 cM between markers. This information will prove useful for gene targeting, quantitative trait loci mapping, and marker-assisted selection in Italian ryegrass.  相似文献   

11.
The xylDEGF operon and the regulatory gene xylS of the TOL plasmid found in Pseudomonas putida mt-2 were cloned onto Escherichia coli vector plasmids. A 9.5-kilobase fragment, derived from the TOL segment of pTN2 deoxyribonucleic acid, carried the xyl genes D, E, G, and F, which encode toluate oxygenase, catechol 2,3-oxygenase, 2-hydroxymuconic semialdehyde dehydrogenase, and 2-hydroxymuconic semialdehyde hydrolase, respectively. The enzymes were noninducible unless a 3-kilobase PstI fragment, derived also from the TOL segment, was provided in either cis or trans. The PstI fragment appeared to contain the regulatory gene xylS, which produced a positive regulator. The regulator was activated by m-toluate or benzoate, but not by m-xylene or m-methylbenzyl alcohol. the map positions of xylG and xylF were also determined.  相似文献   

12.
The nucleotide sequence of a PstI fragment prepared from a cloned MH2 virus genome, pMH2-Hd, has been deduced using chemical and enzymatic methods. This fragment, 1862 nucleotides in length, starts with the gag gene, encodes the v-mil sequence and stops within the v-myc gene. This sequence shows that the v-mil gene is fused to the gag gene giving rise to a fused polyprotein of 98 000 daltons: 515 amino acids at the amino terminus would correspond to p10, p19, p27 and part of p12 determinants, 347 amino acids at the carboxy terminus correspond to the v-mil specific sequence. The mil protein shares homology with a number of onc proteins such as src, fes, fms, mos, yes, fps and erbB, as well as with the catalytic chain of the cAMP-dependent protein kinase. This PstI fragment also encodes the beginning of the myc gene which was integrated in MH2 along with the 3' end of the preceding intron placing an acceptor splice site in front of the used open reading frame. As deduced from the sequence, the MH2 myc protein is not identical to the MC29 myc protein. It differs at its amino terminus, which contains little or no gag determinants, depending on the ATG used to initiate translation.  相似文献   

13.
The beta-D-galactosidase (beta-gal) gene from Streptococcus thermophilus was cloned to isolate and characterize it for potential use as a selection marker in a food-grade cloning vector. Chromosomal DNA from S. thermophilus 19258 was cleaved with the restriction enzyme PstI and ligated to pBR322 for transformation into Escherichia coli JM108. A beta-galactosidase-positive clone was detected by its blue color on a medium supplemented with 5-bromo-4-chloro-3-indolyl-beta-D-galactoside. This transformant possessed a single plasmid, designated pRH116, which contained, in addition to the vector DNA, a 7.0-kilobase (kb) PstI insertion fragment coding for beta-gal activity. An extract from JM108(pRH116) contained a beta-gal protein with the same electrophoretic mobility as the beta-gal from S. thermophilus 19258. Compared with the beta-gal from E. coli HB101, the S. thermophilus beta-gal was of lower molecular weight. A restriction map of pRH116 was constructed from cleavage of both the plasmid and the purified insert. The construction of deletion derivatives of pRH116 with BglII, BstEII, and HindIII revealed the approximate location of the gene on the 7.0-kb fragment. The beta-gal gene was further localized to a 3.85-kb region.  相似文献   

14.
The beta-D-galactosidase (beta-gal) gene from Streptococcus thermophilus was cloned to isolate and characterize it for potential use as a selection marker in a food-grade cloning vector. Chromosomal DNA from S. thermophilus 19258 was cleaved with the restriction enzyme PstI and ligated to pBR322 for transformation into Escherichia coli JM108. A beta-galactosidase-positive clone was detected by its blue color on a medium supplemented with 5-bromo-4-chloro-3-indolyl-beta-D-galactoside. This transformant possessed a single plasmid, designated pRH116, which contained, in addition to the vector DNA, a 7.0-kilobase (kb) PstI insertion fragment coding for beta-gal activity. An extract from JM108(pRH116) contained a beta-gal protein with the same electrophoretic mobility as the beta-gal from S. thermophilus 19258. Compared with the beta-gal from E. coli HB101, the S. thermophilus beta-gal was of lower molecular weight. A restriction map of pRH116 was constructed from cleavage of both the plasmid and the purified insert. The construction of deletion derivatives of pRH116 with BglII, BstEII, and HindIII revealed the approximate location of the gene on the 7.0-kb fragment. The beta-gal gene was further localized to a 3.85-kb region.  相似文献   

15.
A catalase gene from Rhizobium sp. SNU003, a root nodule symbiont of Canavalia lineata, was cloned and its nucleotide sequence was determined. The Rhizobium DNA of about 280 bp was amplified using two PCR primers synthesized from the conserved sequences of the type I catalase gene. The nucleotide sequence of the amplified fragment revealed three regions that were conserved in the catalase, showing it as being part of the catalase gene. A genomic Southern hybridization using this fragment as a probe showed that the 5.5 kb PstI, 1.8 kb EcoRI, and 0.7 kb StyI fragments hybridized strongly with the probe. The Rhizobium genomic library constructed into the EMBL3 vector was screened, and one catalase clone was selected. The nucleotide sequence of the 5.5 kb PstI fragment from the clone revealed an open reading frame of 1455 bp, encoding a polypeptide of 485 amino acids with a molecular mass of 54,958 Da and a pI of 6.54. The predicted amino acid sequence of the catalase is 66.3% identical to that of Bacteroides fragilis, but was only 53.3% identical to the Rhizobium meliloti catalase.  相似文献   

16.
The insecticidal crystal protein (ICP) gene, icp, from a 68-kb plasmid derived from Bacillus thuringiensis subsp. sotto was cloned in Escherichia coli. The icp expression in E. coli cells was confirmed by both immunological and insect-toxicity assays of the cell extract. The entire icp gene resides in the 6.6-kb PstI fragment, which codes for a 144-kDal peptide identical to the intact ICP, as determined by its size and reaction with anti-ICP antibody. Deletion analysis further revealed that the 2.8-kb region within the 6.6-kb PstI fragment codes for ICP. Analysis of the nucleotide sequence indicated that a peptide of 934 amino acid residues truncated at the C-terminal end is encoded by this 2.8-kb fragment. A unique feature of this truncated ICP is the abundance of cysteine and lysine residues within its C-terminal region.  相似文献   

17.
18.
The human involucrin gene has been mapped to the region q21-q22 of chromosome 1. Three of six Utah families examined were polymorphic for a PstI fragment of the involucrin gene. In one individual, the variant PstI fragment was found by DNA sequencing to be missing one of the 39 repeats that make up two-thirds of the coding region.  相似文献   

19.
The gene encoding the outer membrane phosphate-selective porin protein P from Pseudomonas aeruginosa was cloned into Escherichia coli. The protein product was expressed and transported to the outer membrane of an E. coli phoE mutant and assembled into functional trimers. Expression of a product of the correct molecular weight was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analysis, using polyclonal antibodies to protein P monomer and trimer forms. Protein P trimers were partially purified from the E. coli clone and shown to form channels with the same conductance as those formed by protein P from P. aeruginosa. The location and orientation of the protein P-encoding (oprP) gene on the cloned DNA was identified by three methods: (i) mapping the insertion point of transposon Tn501 in a previously isolated P. aeruginosa protein P-deficient mutant; (ii) hybridization of restriction fragments from the cloned DNA to an oligonucleotide pool synthesized on the basis of the amino-terminal protein sequence of protein P; and (iii) fusion of a PstI fragment of the cloned DNA to the amino terminus of the beta-galactosidase gene of pUC8, producing a fusion protein that contained protein P-antigenic epitopes. Structural analysis of the cloned DNA and P. aeruginosa chromosomal DNA revealed the presence of two adjacent PstI fragments which cross-hybridized, suggesting a possible gene duplication. The P-related (PR) region hybridized to the oligonucleotide pool described above. When the PstI fragment which contained the PR region was fused to the beta-galactosidase gene of pUC8, a fusion protein was produced which reacted with a protein P-specific antiserum. However, the restriction endonuclease patterns of the PR region and the oprP gene differed significantly beyond the amino-terminal one-third of the two genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号