首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leptin receptor, LRb, and other cytokine receptors are devoid of intrinsic enzymatic activity and rely upon the activity of constitutively associated Jak family tyrosine kinases to mediate intracellular signaling. In order to clarify mechanisms by which Jak2, the cognate LRb-associated Jak kinase, is regulated and mediates downstream signaling, we employed tandem mass spectroscopic analysis to identify phosphorylation sites on Jak2. We identified Ser523 as the first-described site of Jak2 serine phosphorylation and demonstrated that this site is phosphorylated on Jak2 from intact cells and mouse spleen. Ser523 was highly phosphorylated in HEK293 cells independently of LRb-Jak2 activation, suggesting a potential role for the phosphorylation of Ser523 in the regulation of LRb by other pathways. Indeed, mutation of Ser523 sensitized and prolonged signaling by Jak2 following activation by the intracellular domain of LRb. The effect of Ser523 on Jak2 function was independent of Tyr570-mediated inhibition. Thus, the phosphorylation of Jak2 on Ser523 inhibits Jak2 activity and represents a novel mechanism for the regulation of Jak2-dependent cytokine signaling.  相似文献   

2.
Activation of downstream signals by the long form of the leptin receptor   总被引:24,自引:0,他引:24  
The adipocyte-derived hormone leptin signals the status of body energy stores by activating the long form of the leptin receptor (LRb). Activation of LRb results in the activation of the associated Jak2 tyrosine kinase and the transmission of downstream phosphotyrosine-dependent signals. We have investigated the signaling function of mutant LRb intracellular domains under the control of the extracellular erythropoietin (Epo) receptor. By using this system, we confirm that two tyrosine residues in the intracellular domain of murine LRb become phosphorylated to mediate LRb signaling; Tyr(985) controls the tyrosine phosphorylation of SHP-2, and Tyr(1138) controls STAT3 activation. We furthermore investigated the mechanisms by which LRb controls downstream ERK activation and c-fos and SOCS3 message accumulation. Tyr(985)-mediated recruitment of SHP-2 does not alter tyrosine phosphorylation of Jak2 or STAT3 but results in GRB-2 binding to tyrosine-phosphorylated SHP-2 and is required for the majority of ERK activation during LRb signaling. Tyr(985) and ERK activation similarly mediate c-fos mRNA accumulation. In contrast, SOCS3 mRNA accumulation requires Tyr(1138)-mediated STAT3 activation. Thus, the two LRb tyrosine residues that are phosphorylated during receptor activation mediate distinct signaling pathways as follows: SHP-2 binding to Tyr(985) positively regulates the ERK --> c-fos pathway, and STAT3 binding to Tyr(1138) mediates the inhibitory SOCS3 pathway.  相似文献   

3.
Kinases of the Jak family (Jak1/2/3 and Tyk2) interact with the membrane proximal domain of different cytokine receptors and play a critical role in the activation of cytokine and growth factor signaling pathways. In this report we demonstrate that both the Box 1 and Box 2 motif collaborate in the association and activation of Jak1 by type I interferons. Mutational analysis of the beta chain of type I interferon receptor (IFNalphaRbetaL/IFNAR2) revealed that Box 1 plays a more significant role in activation than in the association with Jak1. On the contrary, the Box 2 motif contributes more to the association with Jak1 than to kinase activation. Additionally, the study of the Jak1 binding sites on the IL2 receptor beta (IL2Rbeta), IFNgammaRalpha/IFNGR1, and IL10Ralpha/IL10R1 chains suggests that cytokine receptors have two different kinds of interaction with Jak1. One form of interaction involves the Box 1 and the previously described Box 2 motif, which we now designate as Box 2A, characterized by the VEVI and LEVL sequences present in IFNalphaRbetaL/IFNAR2 and IL2Rbeta subunits, respectively. The second form of interaction requires a motif termed Box 2B, which is present in the IFNgammaRalpha/IFNGR1 (SILLPKS) and IL10Ralpha/IL10R1 (SVLLFKK) chains. Interestingly, Box 2B localizes close to the membrane region (8-10 amino acids from the membrane) similar to Box 1, whereas Box 2A is more distal (38-58 amino acids from the membrane).  相似文献   

4.
The tyrosine kinase, Janus kinase-2 (Jak2), plays a pivotal role in signal transduction through a variety of cytokine receptors, including the receptor for erythropoietin (Epo). Although the physiological relevance of Jak2 has been definitively established, less is known about its regulation. In studies assessing the roles of sites of tyrosine phosphorylation, we identified Y(119) in the FERM (band 4.1, Ezrin, radixin and moesin) domain as a phosphorylation site. In these studies, we demonstrate that the phosphorylation of Y(119) in response to Epo downregulates Jak2 kinase activity. Using a phosphorylation mimic mutation (Y(119)E), downregulation is shown to involve dissociation of Jak2 from the receptor complex. Conversely, a Y(119)F mutant is more stably associated with the receptor complex. Thus, in cytokine responses, ligand binding induces activation of receptor associated Jak2, autophosphorylation of Y(119) in the FERM domain and the subsequent dissociation of the activated Jak2 from the receptor and degradation. This regulation occurs with the receptors for Epo, thrombopoietin and growth hormone but not with the receptor for interferon-gamma.  相似文献   

5.
Janus kinases are essential for signal transduction by a variety of cytokine receptors and when inappropriately activated can cause hematopoietic disorders and oncogenesis. Consequently, it can be predicted that the interaction of the kinases with receptors and the events required for activation are highly controlled. In a screen to identify phosphorylation events regulating Jak2 activity in EpoR signaling, we identified a mutant (Jak2-Y613E) which has the property of being constitutively activated, as well as an inactivating mutation (Y766E). Although no evidence was obtained to indicate that either site is phosphorylated in signaling, the consequences of the Y613E mutation are similar to those observed with recently described activating mutations in Jak2 (Jak2-V617F and Jak2-L611S). However, unlike the V617F or L611S mutant, the Y613E mutant requires the presence of the receptor but not Epo stimulation for activation and downstream signaling. The properties of the Jak2-Y613E mutant suggest that under normal conditions, Jak2 that is not associated with a receptor is locked into an inactive state and receptor binding through the FERM domain relieves steric constraints, allowing the potential to be activated with receptor engagement.  相似文献   

6.
7.
STAM containing an SH3 (Src homology 3) domain and an immunoreceptor tyrosine-based activation motif was previously revealed to be implicated in signaling pathways immediately downstream of Jak2 and Jak3 tyrosine kinases associated with cytokine receptors. We molecularly cloned a novel molecule interacting with the SH3 domain of STAM, which was named AMSH (associated molecule with the SH3 domain of STAM). AMSH contains a putative bipartite nuclear localization signal and a homologous region of a c-Jun activation domain-binding protein 1 (JAB1) subdomain in addition to a binding site for the SH3 domain of STAM. AMSH mutant deleted of the C-terminal half conferred dominant negative effects on signaling for DNA synthesis and c-myc induction mediated by interleukin 2 and granulocyte macrophage-colony-stimulating factor. These results suggest that AMSH plays a critical role in the cytokine-mediated intracellular signal transduction downstream of the Jak2/Jak3.STAM complex.  相似文献   

8.
The erythropoietin (Epo) receptor transduces its signals by activating physically associated tyrosine kinases, mainly Jak2 and Lyn, and thereby inducing tyrosine phosphorylation of various substrates including the Epo receptor (EpoR) itself. We previously demonstrated that, in Epo-stimulated cells, an adapter protein, CrkL, becomes tyrosine-phosphorylated, physically associates with Shc, SHP-2, and Cbl, and plays a role in activation of the Ras/Erk signaling pathway. Here, we demonstrate that Epo induces binding of CrkL to the tyrosine-phosphorylated EpoR and SHIP1 in 32D/EpoR-Wt cells overexpressing CrkL. In vitro binding studies showed that the CrkL SH2 domain directly mediates the EpoR binding, which was specifically inhibited by a synthetic phosphopeptide corresponding to the amino acid sequences at Tyr(460) in the cytoplasmic domain of EpoR. The CrkL SH2 domain was also required for tyrosine phosphorylation of CrkL in Epo-stimulated cells. Overexpression of Lyn induced constitutive phosphorylation of CrkL and activation of Erk, whereas that of a Lyn mutant lacking the tyrosine kinase domain attenuated the Epo-induced phosphorylation of CrkL and activation of Erk. Furthermore, Lyn, but not Jak2, phosphorylated CrkL on tyrosine in in vitro kinase assays. Together, the present study suggests that, upon Epo stimulation, CrkL is recruited to the EpoR through interaction between the CrkL SH2 domain and phosphorylated Tyr(460) in the EpoR cytoplasmic domain and undergoes tyrosine phosphorylation by receptor-associated Lyn to activate the downstream signaling pathway leading to the activation of Erk and Elk-1.  相似文献   

9.
The proliferation and survival of hematopoietic cells is strictly regulated by cytokine growth factors that act through receptors of the Type I cytokine receptor family, including erythropoietin (Epo) and its receptor, EpoR. Mitogenic signaling by these receptors depends on activation of Jak tyrosine kinases. However, other required components of this pathway have not been fully identified. In a screen for proteins that interact with EpoR and Jak2, we identified a novel member of the U-box family of ubiquitin ligases. This receptor-associated ubiquitin ligase, RUL, co-precipitated with EpoR from mammalian cells and mediated ubiquitination of EpoR. Also, endogenously expressed RUL was rapidly and transiently phosphorylated on serine after cytokine treatment of factor-dependent hematopoietic cells. Expression of ubiquitin ligase-deficient mutants of RUL inhibited Epo-induced expression of c-myc and bcl-2, two immediate-early genes normally associated with Epo-induced cell growth. Consistent with that finding, expression of mutant RUL also inhibited Epo-dependent proliferation and survival of factor-dependent cells. Together, these observations suggest that RUL is a required component of mitogenic signaling by EpoR. We also show that RUL is phosphorylated in response to growth factors that act through non-cytokine receptors, suggesting that RUL may function as a common regulator of mitogenesis.  相似文献   

10.
Leptin is an adipokine that regulates food intake and energy expenditure by activating its hypothalamic leptin receptor (LR). Members of the insulin receptor substrate (IRS) family serve as adaptor proteins in the signaling pathways of several cytokines and hormones and a role for IRS2 in central leptin physiology is well established. Using mammalian protein-protein interaction trap (MAPPIT), a cytokine receptor-based two-hybrid method, in the N38 hypothalamic cell line, we here demonstrate that also IRS4 interacts with the LR. This recruitment is leptin dependent and requires phosphorylation of the Y1077 motif of the LR. Domain mapping of IRS4 revealed the critical role of the pleckstrin homology domain for full interaction. In line with its function as an adaptor protein, IRS4 interacted with the regulatory p85 subunit of the phosphatidylinositol 3-kinase, phospholipase Cgamma, and the suppressor of cytokine signaling (SOCS) family members SOCS2, SOCS6, and SOCS7 and thus can modulate LR signaling.  相似文献   

11.
12.
Mapping of the leptin binding sites and design of a leptin antagonist   总被引:3,自引:0,他引:3  
The leptin/leptin receptor system shows strong similarities to the long-chain cytokine interleukin-6 (IL-6) and granulocyte colony-stimulating factor cytokine/receptor systems. The IL-6 family cytokines interact with their receptors through three different binding sites I-III. The leptin structure was superposed on the crystal structures of several long-chain cytokines, and a series of leptin mutants was generated focusing on binding sites I-III. The effect of the mutations on leptin receptor (LR) signaling and on binding to the membrane proximal cytokine receptor homology domain (CRH2) of the LR was determined. Mutations in binding site I at the C terminus of helix D show a modest effect on signaling and do not affect binding to CRH2. Binding site II is composed of residues at the surface of helices A and C. Mutations in this site impair binding to CRH2 but have only limited effect on signaling. Site III mutations around the N terminus of helix D impair receptor activation without affecting binding to CRH2. We identified an S120A/T121A mutant in binding site III, which lacks any signaling capacity, but which still binds to CRH2 with wild type affinity. This leptin mutant behaves as a potent leptin antagonist both in vitro and in vivo.  相似文献   

13.
14.
15.
The binding of erythropoietin (Epo) to its receptor leads to the transient phosphorylation of the Epo receptor (EpoR) and the activation of intracellular signaling pathways. Inactivation mechanisms are simultaneously turned on, and Epo-induced signaling pathways return to nearly basal levels after 30-60 min of stimulation. We show that proteasomes control these inactivation mechanisms. In cells treated with the proteasome inhibitors N-Ac-Leu-Leu-norleucinal (LLnL) or lactacystin, EpoR tyrosine phosphorylation and activation of intracellular signaling pathways (Jak2, STAT5, phosphatidylinositol 3-kinase) were sustained for at least 2 h. We show that this effect was due to the continuous replenishment of the cell surface pool of EpoRs in cells treated with proteasome inhibitors. Proteasome inhibitors did not modify the internalization and degradation of Epo.EpoR complexes, but they allowed the continuous replacement of the internalized receptors by newly synthesized receptors. Proteasome inhibitors did not modify the synthesis of EpoRs, but they allowed their transport to the cell surface. N-Ac-Leu-Leu-norleucinal, but not lactacystin, also inhibited the degradation of internalized Epo.EpoR complexes, most probably through cathepsin inhibition. The internalized EpoRs were not tyrosine-phosphorylated, and they did not activate intracellular signaling pathways. Our results show that the proteasome controls the down-regulation of EpoRs in Epo-stimulated cells by inhibiting the cell surface replacement of internalized EpoRs.  相似文献   

16.
The leptin receptor (LR) complex is composed of a single subunit belonging to the class I cytokine receptor family and exists as a preformed complex. The extracellular portion contains two cytokine receptor homology (CRH) domains, separated by an Ig-like domain and followed by two membrane-proximal fibronectin type III (FNIII) domains. The mechanisms underlying ligand-induced receptor activation are still poorly understood. LRs can exist as disulfide-linked dimers at the cell surface, even in the absence of leptin. We evaluated the role of the two unpaired cysteine residues (Cys-672 and Cys-751) in the FNIII domains in receptor clustering, leptin binding, and biological activity. Although mutation of cysteine on position 751 to serine has hardly any effect on ligand binding and receptor activation, the C672S mutant exhibits a marked reduction in STAT3-dependent signaling. The double mutant was completely devoid of biological activity, although leptin binding remained unaffected. Mutation of both residues resulted in complete loss of disulfide bridge formation of FNIII domains in solution. In contrast, no difference was observed in ligand-independent oligomerization of the membrane-bound receptor, suggesting a role for cysteines in the CRH2 domain in formation of the preformed LR complex. We propose a model wherein leptin-induced clustering of two preformed dimers forms the activated LR complex. Disulfide bridge formation involving Cys-672 and Cys-751 may be necessary for JAK activation and hence signaling.  相似文献   

17.
Janus (Jak) tyrosine kinases contain a tyrosine kinase (JH1) domain adjacent to a catalytically inactive pseudokinase domain (JH2). The JH2 domain has been implicated in regulation of Jak activity, but its function remains poorly understood. Here, we found that the JH2 domain negatively regulates the activity of Jak2 and Jak3. Deletion of JH2 resulted in increased tyrosine phosphorylation of the Jak2- and Jak3-JH2 deletion mutants as well as of coexpressed STAT5. In cytokine receptor signaling, the deletion of the Jak2- and Jak3-JH2 domains resulted in interferon-gamma and interleukin-2-independent STAT activation, respectively. However, cytokine stimulations did not further induce the JH2 deletion mutant-mediated STAT activation. The deletion of the Jak2 JH2 domain also abolished interferon-gamma-inducible kinase activation, although it did not affect the reciprocal Jak1-Jak2 interaction in 293T cells. Chimeric constructs, where the JH2 domains were swapped between Jak2 and Jak3, retained low basal activity and cytokine inducible signaling, indicating functional conservation between the two JH2 domains. However, the basal activity of Jak2 was significantly lower than that of Jak3, suggesting differences in the regulation of Jak2 and Jak3 activity. In conclusion, we found that the JH2 domain has a conserved function in Jak2 and Jak3. The JH2 domain is required for two distinct functions in cytokine signaling: (i) inhibition of the basal activity of Jak2 and Jak3, and (ii) cytokine-inducible activation of signaling. The Jak-JH2 deletion mutants are catalytically active, activate STAT5, and interact with another Jak kinase, but the JH2 domain is required to connect these signaling events to receptor activation. Thus, we propose that the JH2 domain contributes to both the uninduced and ligand-induced Jak-receptor complex, where it acts as a cytokine-inducible switch to regulate signal transduction.  相似文献   

18.
We have recently shown that a heterotrimeric G(i) protein is coupled to the erythropoietin (Epo) receptor. The G(i) protein constitutively associates in its heterotrimeric form with the intracellular domain of Epo receptor (EpoR). After Epo stimulation G(i) is released from the receptor and activated. In the present study we have investigated the functional role of the heterotrimeric G(i) protein bound to EpoR. In Chinese hamster ovary cells expressing EpoR, the G(i) inhibitor pertussis toxin blocked mitogen-activated protein kinase (MAPK) Erk1/2 activation induced by Epo. Epo-dependent MAPK activation was also sensitive to the G beta gamma competitive inhibitor beta ARK1-ct (C-terminal fragment of the beta-adrenergic receptor kinase), to the Ras dominant negative mutant RasN17, and to the phosphoinositide 3-kinase (PI3K) inhibitor LY 294002. A region of 7 amino acids (469-475) in the C-terminal end of EpoR was shown to be required for G(i) binding to EpoR in vivo. Deletion of this region in EpoR abolished both MAPK and PI3K activation in response to Epo. We conclude that in Chinese hamster ovary cells, Epo activates MAPK via a novel pathway dependent on G(i) association to EpoR, G beta gamma subunit, Ras, and PI3K. The tyrosine kinase Jak2 also contributes to this new pathway, more likely downstream of beta gamma and upstream of Ras and PI3K. This pathway is similar to the best characterized pathway used by seven transmembrane receptors coupled to G(i) to activate MAPK and may cooperate with other described Epo-dependent MAPK activation pathways in hematopoietic cells.  相似文献   

19.
Erythropoietin (Epo) is a hematopoietic cytokine that is crucial for the differentiation and proliferation of erythroid progenitor cells. Epo acts on its target cells by inducing homodimerization of the erythropoietin receptor (EpoR), thereby triggering intracellular signaling cascades. The EpoR encompasses eight tyrosine motifs on its cytoplasmic tail that have been shown to recruit a number of regulatory proteins. Recently, the feedback inhibitor suppressor of cytokine signaling-3 (SOCS-3), also referred to as cytokine-inducible SH2-containing protein 3 (CIS-3), has been shown to act on Epo signaling by both binding to the EpoR and the EpoR-associated Janus kinase 2 (Jak2) [Sasaki, A., Yasukawa, H., Shouda, T., Kitamura, T., Dikic, I. & Yoshimura, A. (2000) J. Biol. Chem 275, 29338-29347]. In this study tyrosine 401 was identified as a binding site for SOCS-3 on the EpoR. Here we show that human SOCS-3 binds to pY401 with a Kd of 9.5 microm while another EpoR tyrosine motif, pY429pY431, can also interact with SOCS-3 but with a ninefold higher affinity than we found for the previously reported motif pY401. In addition, SOCS-3 binds the double phosphorylated motif pY429pY431 more potently than the respective singly phosphorylated tyrosines indicating a synergistic effect of these two tyrosine residues with respect to SOCS-3 binding. Surface plasmon resonance analysis, together with peptide precipitation assays and model structures of the SH2 domain of SOCS-3 complexed with EpoR peptides, provide evidence for pY429pY431 being a new high affinity binding site for SOCS-3 on the EpoR.  相似文献   

20.
Cellular fates such as proliferation, differentiation, and death are controlled by a variety of cytokine receptors, which are crucial in initiating downstream signaling cascades. To initiate signaling, the cytokine receptor cytoplasmic domain recruits specific signaling molecules with a range of tyrosine-containing motifs. Thus, we postulate that it is possible to regulate signal transduction artificially by locating the tyrosine motif of interest into the intracellular domain of specific receptors. Construction of such artificial receptors was based on an anti-fluorescein ScFv/c-Mpl chimera (S-Mpl). We selected several known tyrosine motifs from native cytokine receptors that strongly bind to their target molecule, and located them downstream of the Janus kinase (JAK) binding domain of S-Mpl, which would be necessary for phosphorylation of the receptor. Next, we used retroviral transduction to express chimeric receptors in a murine IL-3-dependent pro-B cell line, Ba/F3, which was stimulated with BSA-fluorescein. The results indicated that each chimeric receptor preferentially activated the corresponding signaling molecule. We also examined whether the position of the tyrosine motif in the receptor could influence the activation levels of the signal transducer, and found that the chimeric receptors could activate the corresponding signaling molecule even when the tyrosine motif was distant from the JAK binding domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号