首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atrial natriuretic factor (ANF) is stored in atrial cardiocytes as the 126 amino acid polypeptide, proANF, which is later cleaved to the 24-28 amino acid carboxyterminal peptides, the major circulating forms. Earlier studies have demonstrated that isolated, cultured neonatal rat cardiocytes both store and secrete proANF, which can be cleaved to the smaller circulating form(s) by a serum protease. Since differences may exist between neonatal and adult cardiocytes with respect to ANF synthesis and processing, we compared the forms of ANF stored and secreted by neonatal rat cardiocytes with those of adult cells. Using four to five day cultures of isolated atrial cardiocytes prepared from the hearts of neonatal and adult rats, pulse-chase studies were performed with 35S-cysteine and 35S-methionine. Analysis of ANF stored and secreted by these cells was performed by immunoprecipitation of cell extracts and culture media using antibodies directed to either the carboxyterminus or aminoterminus of proANF followed by SDS-PAGE and autoradiography. Cell extracts from both adult and neonatal cultures were found to contain only a 17-kDa polypeptide, previously identified as proANF. The predominant form found in the culture media was also the 17-kDa peptide, with smaller quantities of its 3-kDa carboxyterminal and 14-kDa aminoterminal cleavage products. We conclude from these studies that proANF is the major form stored and secreted by both adult and neonatal cardiocytes in culture; the activity of the protease that cleaves proANF to the smaller forms found in the circulation is either attenuated or is overwhelmed by high ANF-secretory rates in these cultures. Alternatively, the ANF processing and secretory pathways may be somehow altered in culture such that proANF escapes protease cleavage. Further studies will elucidate the nature and location of this protease.  相似文献   

2.
Atrial natriuretic factor (ANF) is synthesized and stored in atrial cardiocytes as a 17-kilodalton (kDa), 126 amino acid polypeptide, proANF, but circulates as smaller, 24 and 28 amino acid peptide fragments of the carboxy terminus of proANF. It has previously been shown that proANF is secreted intact from cultured atrial cardiocytes and can be cleaved by a serum protease to smaller, 3-kDa peptides believed to be the circulating forms. This report describes the purification and characterization of this proANF-cleaving protease from rat serum. The cleavages both of 35S-labeled proANF derived from rat atrial cell cultures, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)/autoradiography, and of a synthetic p-nitroanilide-containing substrate were used as assays for the detection of enzyme activity. ProANF-cleaving activity was found in rat serum, with no such activity detectable in rat plasma. Cleavage in serum was not dependent on the presence of platelets or other cellular elements. Complete inhibition of proANF cleavage was obtained with the protease inhibitors benzamidine, leupeptin, phenylmethanesulfonyl fluoride, and diisopropyl fluorophosphate (DFP) but not with aprotinin, soybean trypsin inhibitor, pepstatin, or hirudin. Unlike the vitamin K dependent plasma proteins, the proANF-cleaving protease did not adsorb to barium sulfate. With the sequential application of ion-exchange, hydroxylapatite, lectin affinity, and gel filtration chromatography, a 5000-6000-fold purification of the enzyme from rat serum was achieved. Fractionation of either whole serum or the purified enzyme by gel filtration chromatography revealed a single peak of activity corresponding to a protein with a Stokes radius of 45 A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
D L Vesely  A T Giordano 《Peptides》1992,13(1):177-182
The present investigation was designed to determine if the atrial natriuretic peptide hormonal system is present within single cell organisms. Paramecium multimicronucleatum were examined with 3 sensitive and specific radioimmunoassays which recognize the N-terminus [amino acids 1-98; proANF(1-98)], the midportion of the N-terminus [amino acids 31-67; proANF(31-67)] and C-terminus (amino acids 99-126; ANF) of the 126 amino acid atrial natriuretic factor (ANF) prohormone. ProANF(1-98), proANF(31-67), and ANF-like peptides were all present within these unicellular organisms at concentrations of 460 +/- 19 pg/ml, 420 +/- 15 pg/ml, and 14.5 +/- 2 pg/ml, respectively. These concentrations are similar to their respective concentrations in the plasma of the rat (Rattus norvegicus). These results suggest that even single cell organisms contain the atrial natriuretic peptide-like hormonal system.  相似文献   

4.
The atrial natriuretic factor (ANF) secreted from rat cardiocytes in culture was purified and characterized. The purification procedure involves extraction of ANF by activated Vycor glass, followed by HPLC on C18 mu Bondapak and Vydac columns. The detection of ANF in column eluates was performed by a simple and sensitive radioimmunoassay. The amino acid composition and N-terminal amino acid sequencing appeared to be identical to the Arg 101 - Tyr 126 peptide. The isolated ANF showed biological activity, inhibiting basal and ACTH-stimulating aldosterone secretion from rat zona glomerulosa cells with the same potency as the synthetic peptide.  相似文献   

5.
The localization of the N-terminal fragment of the atrial natriuretic factor (ANF) precursor in the heart of the frog Rana ridibunda was examined by the indirect immunofluorescence and the immunogold techniques using an antiserum directed against synthetic rat ANF (Asp11-Ala37). At the optic level, positive material was found in most atrial myocytes. Staining of consecutive sections of frog heart with antibodies against N-terminal and C-terminal regions of the proANF molecule showed that both peptides are contained in the same cardiocytes. In the rat atrium, antibodies against the N-terminal ANF region induced a more intense labeling than in the frog atrium. Electron microscopic studies indicated that all secretory granules present in frog atrial cardiocytes contain N-terminal ANF-like immunoreactive material. The positive material localized in frog atrium was characterized by gel filtration and radioimmunological detection. Serial dilutions of frog atrial extracts exhibited displacement curves which were parallel to that obtained with synthetic human ANF (Asn1-Asp30). Sephadex G-50 gel chromatography of the immunoreactive material showed that the N-terminal ANF-like immunoreactivity eluted in a single peak corresponding to high molecular weight material. These results indicate that the N-terminal fragment of frog proANF is immunologically and biochemically related to the homologous mammalian peptide.  相似文献   

6.
The presence of biologically active atrial natriuretic factor (ANF)-like peptides was demonstrated in rat anterior pituitary. ANF-like immunoreactivity was detected in rat anterior pituitary by specific radioimmunoassay and was extracted from rat anterior pituitary homogenates by heat-activated Vycor glass beads; extracts were purified by reverse-phase high performance liquid chromatography. Two peaks containing ANF immunoreactive material were obtained. The first peak was eluted from the C18 mu Bondapak column at a position similar to the 28-amino acid carboxy terminal peptide (Ser99-Tyr126)-ANF of prohormone. The second peak had the same pattern of elution as the 126-amino acid prohormone, (Asn1-Tyr126)-ANF. The biological activity of the smaller molecular weight peptide (28 amino acid) was assessed by its inhibitory effect on 10(-8) M ACTH-stimulated aldosterone secretion in rat zona glomerulosa cell suspension. This ANF-like material also displaced I125-labelled ANF from rat glomerular receptors with a potency similar to synthetic (Arg101-Tyr126)-ANF. Immunocytochemical localization revealed a distribution of ANF-stained cells similar in pattern and location to that of gonadotrophs. These results suggest the existence of biologically active ANF-like peptides and ANF prohormone within the anterior pituitary. However, their role remains to be elucidated.  相似文献   

7.
The 98 amino acid (a. a.) N-terminus of the 126 a. a. atrial natriuretic factor (ANF) prohormone contains three peptides consisting of a. a. 1–30 (proANF 1–30), a. a. 31–67 (proANF 31–67) and a. a. 79–98 (proANF 79–98) with blood pressure lowering, sodium and/or potassium excreting properties similar to atrial natriuretic factor (a. a. 99–126, C-terminus of prohormone). ProANF 1–30 and proANF 31–67 have separate and distinct receptors from ANF in both vasculature and in the kidney to help mediate the above effects. At the cellular level proANFs 1–30, 31–67, and 79–98 as well as ANF's effects are mediated by enhancement of the guanylate cyclase (EC 4.6.1.2) — cyclic GMP system in vasculature and in the kidney. These peptides from the N-terminus of the ANF prohormone circulate normally in man and in all animal species tested. The object of the present investigation was to determine if these peptides have the ability to enhance either guanylate cyclase and/or adenylate cyclase in a variety of other tissues in addition to kidney and vasculature. ProANF 1–30, proANF 31–67, proANF 79–98, and ANF all increased rat lung, liver, heart and testes, but not spleen, particulate guanylate cyclase 2- to 3-fold at their 100 nM concentrations. Dose response curves revealed that maximal stimulation of particulate guanylate cyclase activity by these newly discovered peptides was at their 1 M concentrations, with no further increase in activity above their 1 M concentrations. Half-maximal (EC50) enhancement of particulate guanylate cyclase occurred at 0.15 ± 0.01, 0.3 ± 0.02, 0.5 ± 0.03, and 0.9 ± 0.03 nM for proANF 1–30, proANF 31–67, proANF 79–98 and ANF, respectively. ProANFs 1–30, 31–67, 79–98, and 99–126 (i.e., ANF) each increased cyclic GMP but not cyclic AMP levels in tissue slices of liver, lung, small intestine, heart, and testes. None of these peptides enhanced either adenylate cyclase or the soluble 100,000 G form of guanylate cyclase. The ability of these N-terminal peptides to enhance particulate guanylate cyclase activity in a wide variety of tissues suggests that they may have effects in a much wider variety of tissues than presently thought.  相似文献   

8.
The N-terminus consisting of amino acids (a.a.) 1-98 (i.e., proANF 1-98), C-terminus (i.e., ANF; a.a. 99-126) and midportion of N-terminus consisting of a.a. 31-67 (proANF 31-67; Vessel Dilator) of the 126 a.a. ANF prohormone were present in the urine in 5-to-8-fold increased concentrations versus their plasma concentrations in 6 dogs under basal conditions. With acute coronary occlusion the right atrial plasma concentrations of these peptides increased two-to-three-fold, while in the urine only proANF 31-67 increased (3.5-fold). Ventricular fibrillation caused a 4-to-10-fold increased secretion into the right atrial chamber with a simultaneous 3-to-4.7-fold increase in the urine of proANF 1-98, proANF 31-67, and ANF. This investigation demonstrates that proANF 1-98, proANF 31-67 and ANF are normally present in urine and increase in the urine with cardiac stimuli that cause their release from the heart.  相似文献   

9.
The 98 amino acid (a.a.) N-terminus of the 126 a.a. atrial natriuretic factor prohormone contains two natriuretic and vasodilatory peptides consisting of a.a. 1-30 (proANF 1-30) and a.a. 31-67 (proANF 31-67). The N-terminus and C-terminus (a.a. 99-126, i.e., ANF--also a vasodilatory peptide) circulate normally in humans with a circadian peak at 04:00 h in plasma. To determine if the N-terminus and C-terminus of the ANF prohormone are present in urine and possibly have a circadian variation in urine, six healthy volunteers had urine samples hourly while awake and every 3 h during sleep for five consecutive days obtained for radioimmunoassay. The sleep-awake pattern was varied so that after 2 days of normal sleep (supine)-awake (upright) positions, these volunteers were supine from 15:00 h on the third day until 10:00 h of the fourth day. They were then upright until 19:00 h that day when they became supine again until 02:30 h, and then were upright until 10:00 h of day 5. Three radioimmunoassays that immunologically recognize (a) the whole N-terminus (i.e., amino acids 1-98), (b) the midportion of the N-terminus (amino acids 31-67), and (c) the C-terminus of the ANF prohormone were utilized. ProANF 1-98, proANF 31-67, and the ANF radioimmunoassays each detected their respective peptides in urine. A circadian peak for each of these peptides was detected at 04:00 to 05:00 h whether the person was supine or upright during the night, which were significantly (p less than 0.001) higher than their concentrations in the afternoon of the previous days. Assuming a supine position during the day caused a significant (p less than 0.01) two- to threefold increase in these peptides in the urine. Food intake also increased the concentrations of proANF 1-98, proANF 31-67, and ANF in urine (p less than 0.001). Fluid intake when abstaining from food throughout the day lowered the concentration of these peptides in the urine. It was concluded that there is a circadian rhythm in both the N-terminus and C-terminus of the ANF prohormone excretion into urine with a peak at 04:00 h irrespective of posture, but that both posture and food and fluid intake throughout the day significantly influence the excretion of these peptides into the urine, with supine posture and food increasing their concentrations in the urine while fluid intake decreases their concentrations in the urine.  相似文献   

10.
Two peptides with vasodilatory properties consisting of amino acids 1-30 and 31-67 of the 98 a.a. N-terminal end of the prohormone of atrial natriuretic factor (proANF) which circulates in man were investigated to determine if they have specific binding sites on membranes isolated from DDT1 MF-2 smooth muscle cells. Smooth muscle is a known biologic target of these peptides. Competitive binding experiments revealed that proANFs (1-30), (31-67), and (99-126) (i.e., C-terminus; ANF) each had specific and separate binding sites. The dissociation constants for proANFs (1-30), (31-67), and (99-126) binding were 0.11 nM, 4 nM, and 7.3 nM, respectively. The binding site concentrations for proANFs (1-30), (31-67), and ANF were 2.57, 59.91 and 40 fmols/10(6) cells, respectively. The number of binding sites per cell were 1548, 36,087, and 24,090, respectively, for proANFs (1-30), (31-67), and (99-126) (ANF). Each peptide bound to DDT1 MF-2 membranes between 10(-8) to 10(-11) M but could only bind to the other peptides' receptors at concentrations of 10(-6) and 10(-7)M. These results suggest that proANF(1-30) and proANF(31-67) do not work through the ANF receptor but rather have their own separate and distinct receptors that mediate their biologic effects.  相似文献   

11.
The 98 amino acid (a.a.) N-terminus of the 126 a.a. atrial natriuretic factor prohormone contains two natriuretic and vasodilatory peptides consisting of a.a. 1–30 (proANF 1–30) and a.a. 31–67 (proANF 31–67). The N-terminus and C-terminus (a.a. 99–126, i.e., ANF–also a vasodilatory peptide) circulate normally in humans with a circadian peak at 04:00 h in plasma. To determine if the N-terminus and C-terminus of the ANF prohormone are present in urine and possibly have a circadian variation in urine, six healthy volunteers had urine samples hourly while awake and every 3 h during sleep for five consecutive days obtained for radioimmunoassay. The sleep-awake pattern was varied so that after 2 days of normal sleep (supine)-awake (upright) positions, these volunteers were supine from 15:00 h on the third day until 10:00 h of the fourth day. They were then upright until 19:00 h that day when they became supine again until 02:30 h, and then were upright until 10:00 h of day 5. Three radioimmunoassays that immunologically recognize (a) the whole N-terminus (i.e., amino acids 1–98), (b) the midportion of the N-terminus (amino acids 31–67), and (c) the C-terminus of the ANF prohormone were utilized. ProANF 1–98, proANF 31–67, and the ANF radioimmunoassays each detected their respective peptides in urine. A circadian peak for each of these peptides was detected at 04:00 to 05:00 h whether the person was supine or upright during the night, which were significantly (p < 0.001) higher than their concentrations in the afternoon of the previous days. Assuming a supine position during the day caused a significant (p < 0.01) two- to threefold increase in these peptides in the urine. Food intake also increased the concentrations of proANF 1–98, proANF 31–67, and ANF in urine (p < 0.001). Fluid intake when abstaining from food throughout the day lowered the concentration of these peptides in the urine. It was concluded that there is a circadian rhythm in both the N-terminus and C-terminus of the ANF prohormone excretion into urine with a peak at 04:00 h irrespective of posture, but that both posture and food and fluid intake throughout the day significantly influence the excretion of these peptides into the urine, with supine posture and food increasing their concentrations in the urine while fluid intake decreases their concentrations in the urine.  相似文献   

12.
Primary cultures of neonatal rat atrial myocytes were maintained in two different serum-free media for up to 25 days. Reversed-phase high performance liquid chromatography coupled with atrial natriuretic factor (ANF)-specific radioimmunoassay demonstrated that the cultures maintained in our previously described serum-free medium (Glembotski, C.C., and Gibson, T. R. (1985) Biochem. Biophys. Res. Commun. 132, 1008-1017) secreted primarily ANF-(1-126)-like material, whereas those cultures maintained in a different formulation of medium secreted mostly ANF-(99-126)-like material. Cultures that secreted ANF(99-126)-like material were biosynthetically labeled with [35S]cysteine followed by immunoprecipitation of secreted ANF and analysis by reversed-phase, size exclusion, and ion-exchange high performance liquid chromatography. The labeled ANF-(99-126)-like peptide was shown to be chromatographically indistinguishable from other synthetic peptides related to ANF-(99-126). Labeled ANF purified from extracts of the cultured cells was chromatographically indistinguishable from authentic ANF-(1-126), and could be cleaved specifically by thrombin into labeled ANF-(99-126)-like material. These results indicate that primary atrial myocytes maintained under certain serum-free conditions are capable of secreting ANF-related material that is chromatographically indistinguishable from ANF-(99-126), the known circulating form of the hormone. Additional preliminary studies suggest that the presence of glucocorticoids in the culture medium may confer ANF processing ability on cultured myocytes.  相似文献   

13.
McGrath MF  de Bold AJ 《Peptides》2005,26(6):933-943
The cardiac natriuretic peptides (NP) atrial natriuretic factor or peptide (ANF or ANP) and brain natriuretic peptide (BNP) are polypeptide hormones synthesized, stored and secreted mainly by cardiac muscle cells (cardiocytes) of the atria of the heart. Both ANF and BNP are co-stored in storage granules referred to as specific atrial granules. The biological properties of NP include modulation of intrinsic renal mechanisms, the sympathetic nervous system, the rennin-angiotensin-aldosterone system (RAAS) and other determinants, of fluid volume, vascular tone and renal function. Studies on the control of baseline and stimulated ANF synthesis and secretion indicate at least two types of regulated secretory processes in atrial cardiocytes: one is stretch-stimulated and pertussis toxin (PTX) sensitive and the other is Gq-mediated and is PTX insensitive. Baseline ANF secretion is also PTX insensitive. In vivo, it is conceivable that the first process mediates stimulated ANF secretion brought about by changes in central venous return and subsequent atrial muscle stretch as observed in acute extracellular fluid volume expansion. The second type of stimulation is brought about by sustained hemodynamic and neuroendocrine stimuli such as those observed in congestive heart failure.  相似文献   

14.
Atrial natriuretic peptide hormonal system in plants.   总被引:1,自引:0,他引:1  
To determine if atrial natriuretic peptides are present in plants as well as animals, where they are important for water and sodium metabolism, the leaves and stems of the Florida Beauty (Dracena godseffiana) were examined. The N-terminus consisting of amino acids (a.a.) 1-98 (i.e., pro ANF 1-98), the mid portion of the N-terminus (a.a. 31-67; pro ANF 31-67), and C-terminus (a.a. 99-126; ANF) of the 126 a.a. atrial natriuretic factor (ANF) prohormone were all present in the leaves and stems of this plant. The concentrations of pro ANF 1-98, pro ANF 31-67 and ANF-like peptides of 120 +/- 20, 123 +/- 21, and 129 +/- 20 ng/g of plant tissue in leaves and 109 +/- 20, 96 +/- 21, and 124 +/- 18 ng/g of tissue, respectively, in the stems were lower (P less than 0.05) than their concentrations in rat (Rattus norvegicus) heart atria of 196 +/- 40, 192 +/- 28, and 189 +/- 15 ng/g of tissue respectively, but higher (P less than 0.001) than their respective concentrations of 4.3 +/- 1.4, 4.1 +/- 1.2, and 3.9 +/- 1 ng/g of rat heart ventricular tissue. We conclude that the atrial natriuretic peptide-like hormonal system is present in the plant kingdom as well as in the animal kingdom.  相似文献   

15.
  • 1.1. The content of atrial natriuretic peptides (ANPs) in the auricles of oysters, Crassostrea virginica, was significantly (P < 0.01) greater than in their ventricles.
  • 2.2. High-performance gel permeation chromatography (HP-GPC) followed by ANF radioimmunoassay revealed two peaks in both oyster and vertebrate (rat) hearts—a major peak where the 12.6–14 kDa ANF prohormone elutes and a smaller peak where the pure human form of ANF elutes.
  • 3.3. HP-GPC evaluation followed by proANF 31–67 radioimmunoassay revealed only an ANF-like prohormone while HP-GPC followed by proANF 1–30 radioimmunoassay revealed the ANF prohormone and a proANF 1–30-like peptide in oyster and rat hearts.
  • 4.4. ANPs concentrations in hemolymph were 940 ± 129, 225 ± 25, and 100 ± 10 pg/ml by the proANF 1–30, proANF 31–67, and ANF radioimmunoassays, respectively.
  • 5.5. Atrial natriuretic-like peptides are present in the oyster heart in molecular species similar to vertebrate species and these peptides are also present in hemolymph.
  相似文献   

16.
Atrial muscles of the heart are known to produce polypeptide hormones called atrial natriuretic factors (ANF) which have potent diuretic and hypotensive action. These hormones are synthesized as a larger protein precursor called pro atrial natriuretic factor or proANF which contains the biologically active ANF sequences at its C-terminus. Rat proANF (representing amino acids -1 to 128 of the coding sequence) was expressed in a soluble form in Escherichia coli. A simple purification procedure was developed which consists of boiling E. coli cell extracts in 1 M acetic acid and subjecting the supernatant to reversed-phase HPLC. The effect of intravenous administration of the purified recombinant proANF on mean arterial blood pressure was examined. The displacement dose-response curves obtained demonstrated that proANF exhibits similar, albeit less potent, physiological activity than ANF.  相似文献   

17.
Atrial natriuretic factor in the vena cava and sinus node   总被引:2,自引:0,他引:2  
We investigated the localization of atrial natriuretic factor (ANF) mRNA and of immunoreactive ANF in the vena cava and sinus node of rat and, for comparative purposes, in atria and ventricles. In situ hybridization with an ANF cRNA probe revealed that the supradiaphragmatic portion of the inferior vena cava contains almost as much mRNA as the atria, whereas the levels were less in the superior vena cava and higher than in ventricles in the sinus node. Immunoreactive ANF (high Mr form) was found to be 22 times less abundant in the supradiaphragmatic vena cava and 148 times less abundant in the superior vena cava than in atrial cardiocytes. The wall of the supradiaphragmatic portion of the vena cava and the valve (eustachian valve) that separates the atrial cavity from that of the vein are made up of atrial-like cardiocytes containing secretory granules. The subendothelial area of the superior vena cava also contains atrial-like cardiocytes with secretory granules, whereas the outer portion of the vein is made up of "transitional cells" without or with only a few secretory granules. Secretory granules in the vena cava and nodal cells, as well as transitional cells, contain immunoreactive ANF. With immunocryoultramicrotomy, virtually all cells, whether atrial-like, transitional, or nodal, and even those without secretory granules, were found to contain immunoreactive ANF in their Golgi complex and in secretory vesicles in the vena cava and in the sinus node.  相似文献   

18.
We have studied the effect of synthetic rat atrial natriuretic factor (ANF) on adenylate cyclase activity in cultured cardiocytes from atria (left and right) and ventricles from neonatal rats. ANF (Arg 101-Tyr 126) inhibited adenylate cyclase activity in a concentration dependent manner in cultured atrial (right and left atria) and ventricular cells. However the inhibition was greater in atrial cells as compared to ventricular cells. The maximal inhibition observed in ventricular cells was about 35% with an apparent Ki of about 10(-10) M, whereas about 55% inhibition with an apparent Ki between 5 X 10(-10) M and 65% inhibition with an apparent Ki of 10(-9) M were observed in right and left atrial cardiocytes respectively. The inhibitory effect of ANF was dependent on the presence of guanine nucleotides. Various hormones and agents such as isoproterenol, prostaglandins, adenosine, forskolin and sodium fluoride stimulated adenylate cyclase activities to various degrees in these atrial and ventricular cardiocytes. ANF inhibited the stimulatory responses of all these agonists, however the degree of inhibition varied for each agent. In addition ANF also inhibited cAMP levels in these cells. These data indicate that ANF receptors are present in cardiocytes and are negatively coupled to adenylate cyclase.  相似文献   

19.
Atrial natriuretic factor (ANF) is a 28-amino acid peptide hormone with potent natriuretic, diuretic and vasodilator properties. Isolation and DNA sequence analysis of rat and human cDNA clones revealed that ANF is synthesized from a 126-amino acid precursor which is highly conserved in both species. Southern blot analysis indicated that the ANF gene is present in a single copy per haploid genome. Both human and rat ANF genes were isolated and showed a similar structural organization which consisted of three exons and two introns. The ANF gene was localized to the short arm of human chromosome 1 and mouse chromosome 4. While atria are the major site of expression of the ANF gene in adult heart, other tissues like ventricles, lung, anterior pituitary, hypothalamus and adrenal synthesize ANF albeit to a much lower extent. In ventricles, ANF mRNA levels are 150 times lower than in atria. However, in cardiac hypertrophy or in congestive heart failure, ventricular ANF mRNA and peptide levels are dramatically (100-fold) increased both in animal models and in humans. This suggests that ventricles are a major site of ANF gene expression in certain pathophysiological conditions and that ANF is not an exclusively atrial peptide as was originally thought.  相似文献   

20.
Ozone can cause pulmonary edema and simultaneously decrease blood pressure. Atrial natriuretic peptides may mediate both of these effects in that they increase pulmonary capillary permeability resulting in edema formation and are potent vasodilating peptides. To examine this possibility, the lungs of Fischer 344 rats were exposed to ozone (0.5 ppm) for 8 hours which resulted in a three- to fourfold increase in atrial natriuretic peptides. Ozone also increased atrial natriuretic peptides in the heart two- to fivefold from 266 ± 25, 226 ± 22, and 288 ± 40 ng/g (room air) to 716 ± 26, 471 ± 14, and 1473 ± 235 ng/g recognized by the proANFs 1–30 and 31–67 and atrial natriuretic factor radioimmunoassays, respectively. Ozone also doubled the concentrations of proANFs 1–30, 31–67, and 1–98 and ANF in the circulation. This study demonstrates that ozone increases atrial natriuretic peptides within the heart, lung, and circulation, suggesting that atrial natriuretic peptides may mediate the decreased blood pressure and pulmonary edema observed with ozone exposure. Since the proANF 31–67 radioimmunoassay exclusively recognizes the ANF prohormone within the heart, this study further indicates that ozone can increase the synthesis of the ANF prohormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号