首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A technique which allows the measurement of small numbers of pyrimidine dimers in the deoxyribonucleic acid (DNA) of cells of Bacillus subtilis irradiated with ultraviolet light has been used to show that a strain mutant at the uvr-1 locus is able to excise pyrimidine dimers. Excision repair in this strain was slow, but incision may not be rate limiting because single-strand breaks in DNA accumulate under some conditions. Excision repair probably accounted for a liquid-holding recovery previously reported to occur in this strain. Recombinational exchange of pyrimidine dimers into newly replicated DNA was readily detected in uvr-1 cells, but this exchange did not account for more than a minor fraction of the dimers removed from parental DNA. Excision repair in the uvr-1 strain was inhibited by a drug which complexes DNA polymerase III with DNA gaps. This inhibition may be limited to a number of sites equal to the number of DNA polymerase III molecules, and it is inferred that large gaps are produced by excision of dimers. Because the uvr-1 mutation specifically interferes with excision of dimers at incision sites, it is concluded that the uvr-1 gene product may be an exonuclease which is essential for efficient dimer excision.  相似文献   

2.
3.
4.
5.
6.
7.
Bacillus subtilis mutants with temperature-sensitive growth on complex media were screened for defects in phospholipid metabolism. One mutant was isolated that showed temperature-sensitive net synthesis of phosphatidylethanolamine. The mutant did not accumulate phosphatidylserine at the nonpermissive temperature. In the presence of hydroxylamine, wild-type B. subtilis accumulated phosphatidylserine at both 32 and 45 degrees C, whereas the mutant did only at 32 degrees C. In vitro phosphatidylethanolamine synthesis with bacterial membranes is no more temperature sensitive with mutant membranes than with wild-type membranes. The mutation probably affects the synthesis indirectly, possibly by altering a membrane protein. The mutant bacteria grew at the nonpermissive temperature, 45 degrees C, in a phosphate buffer-based minimal medium, although net synthesis of phosphatidylethanolamine was also temperature sensitive in this medium. One mutation caused both temperature-sensitive growth on complex media and temperature-sensitive net synthesis of phosphatidylethanolamine. The mutation is linked to aroD by transformation.  相似文献   

8.
Isolation of a suppressor mutant in Bacillus subtilis.   总被引:25,自引:16,他引:9  
  相似文献   

9.
10.
Hiraga, Sota (Osaka University, Osaka, Japan). Regulation of synthesis of alkaline phosphatase by deoxyribonucleic acid synthesis in a constitutive mutant of Bacillus subtilis. J. Bacteriol. 91:2192-2199. 1966.-It was found that synthesis of alkaline phosphatase (APase) correlated with deoxyribonucleic acid (DNA) synthesis in a partially constitutive mutant of Bacillus subtilis. When cultures of the mutant were made to undergo synchronous growth by germination of spores in an excess-phosphate medium, synthesis of APase was repressed at the beginning of DNA synthesis. If the initiation of DNA synthesis was inhibited by thymine starvation, the repression of APase was not observed. When DNA synthesis, previously initiated, was inhibited by thymine or uracil starvation, or by addition of mitomycin C, the repression was partially released at a later stage. In contrast, this correlation between repression and DNA synthesis was not observed in a repressible strain.  相似文献   

11.
12.
In the Bacillus subtilis mutant 1D-4, the hydroxamate Desferal inhibited growth, iron uptake, and deoxyribonucleic acid synthesis but did not quantitatively affect synthesis of ribonucleic acid and protein.  相似文献   

13.
The Bacillus subtilis minicell-producing mutant divIV-B1 has a membrane protein profile that is strikingly different from that of the other minicell-producing mutant, divIV-A1, or that of wild-type strain CU403.  相似文献   

14.
15.
16.
Mutations induced by ultraviolet light   总被引:12,自引:0,他引:12  
The different ultraviolet (UV) wavelength components, UVA (320-400 nm), UVB (280-320 nm), and UVC (200-280 nm), have distinct mutagenic properties. A hallmark of UVC and UVB mutagenesis is the high frequency of transition mutations at dipyrimidine sequences containing cytosine. In human skin cancers, about 35% of all mutations in the p53 gene are transitions at dipyrimidines within the sequence 5'-TCG and 5'-CCG, and these are localized at several mutational hotspots. Since 5'-CG sequences are methylated along the p53 coding sequence in human cells, these mutations may be derived from sunlight-induced pyrimidine dimers forming at sequences that contain 5-methylcytosine. Cyclobutane pyrimidine dimers (CPDs) form preferentially at dipyrimidines containing 5-methylcytosine when cells are irradiated with UVB or sunlight. In order to define the contribution of 5-methylcytosine to sunlight-induced mutations, the lacI and cII transgenes in mouse fibroblasts were used as mutational targets. After 254 nm UVC irradiation, only 6-9% of the base substitutions were at dipyrimidines containing 5-methylcytosine. However, 24-32% of the solar light-induced mutations were at dipyrimidines that contain 5-methylcytosine and most of these mutations were transitions. Thus, CPDs forming preferentially at dipyrimidines with 5-methylcytosine are responsible for a considerable fraction of the mutations induced by sunlight in mammalian cells. Using mouse cell lines harboring photoproduct-specific photolyases and mutational reporter genes, we showed that CPDs (rather than 6-4 photoproducts or other lesions) are responsible for the great majority of UVB-induced mutations. An important component of UVB mutagenesis is the deamination of cytosine and 5-methylcytosine within CPDs. The mutational specificity of long-wave UVA (340-400 nm) is distinct from that of the shorter wavelength UV and is characterized mainly by G to T transversions presumably arising through mechanisms involving oxidized DNA bases. We also discuss the role of DNA damage-tolerant DNA polymerases in UV lesion bypass and mutagenesis.  相似文献   

17.
Bacillus subtilis strains UVSSP-42-1 (hcr42 ssp1) and UVSSP-1-1 (hcr1 ssp1) are ultraviolet (UV) radiation sensitive both as dormant spores and as vegetative cells. These strains are unable to excise cyclobutane-type dimers from the deoxyribonucleic acid (DNA) of irradiated vegetative cells and fail to remove spore photoproduct from the DNA of irradiated spores either by excision (controlled by gene hcr) or by spore repair (controlled by gene ssp1). When irradiated soon after spore germination, these strains excise dimers, but not spore photoproduct, from their DNA. This process, termed germinative excision repair, functions only transiently in the germination phase and is responsible for the high UV resistance of germinated spores and for their temporary capacity to host cell reactivate irradiated phages infecting them. The recA1 mutation confers higher UV sensitivity to the germinated spores, but does not interfere with dimer removal by germinative excision repair.  相似文献   

18.
Summary Mutants of Saccharomyces cerevisiae lacking pyruvate kinase (EC 2.7.1.40) are described. These have less than 0.5% of the pyruvate kinase activity of the wild type. All the other glycolytic enymes are present in normal amounts in these mutants. The mutation is recessive and segregates in diploids as a single gene. Five alleles examined fail to complement one another. Tetrad analysis and mitotic recombination data place the mutation on the left arm of chromosome I distal to cys 1. The majority of single-step spontaneous revertants on glucose regain the enzyme activity fully and this activity appears, by a number of criteria, to be due to the same enzyme present in the wild type. Some of these revertants become nuclear petites. The mutants do neither grow on nor ferment sugars but do grow on ethyl alcohol or pyruvate. Glucose addition to cultures growing on alcohol arrests growth until glucose is exhausted. The steady state rate of glucose utilization is slower than in the wild type. This is associated with the accumulation of as much as 5 moles P-enolpyruvate per g wet weight of cells and proportional amounts of 2-P-glyceric and 3-P glyceric acids.The mutation is believed to involve some regulatory element in the synthesis of pyruvate kinase.  相似文献   

19.
A new relaxed mutant of Bacillus subtilis.   总被引:3,自引:1,他引:2       下载免费PDF全文
A new relaxed mutant of Bacillus subtilis was isolated by screening Rifr clones for alterations in stringent control. The Rifr relaxed mutant which is described was found to contain a second-site mutation conferring a relaxed response to an energy source downshift and was partially relaxed after amino acid starvation. The new rel locus, called relG, was distinct from the two other known rel loci in B. subtilis, relA, and relC.  相似文献   

20.
To investigate involvement of DNA mismatch repair in the response to short-wave ultraviolet (UVC) light, we compared UVC-induced mutant frequencies and mutational spectra at the Hprt gene between wild type and mismatch-repair-deficient mouse embryonic stem (ES) cells. Whereas mismatch repair gene status did not significantly affect survival of these cells after UVC irradiation, UVC induced substantially more mutations in ES cells that lack the MutSalpha mismatch-recognizing heterodimer than in wild type ES cells. The global UVC-induced mutational spectra at Hprt and the distribution of most spectral mutational hotspots were found to be similar in mismatch-repair-deficient and wild type cells. However, at one predominant spectral hot spot for mutagenesis in wild type cells, the UVC-induced mutation frequency was not affected by the mismatch repair status. Together these data reveal a major role of mismatch repair in controlling mutagenesis induced by UVC light and may suggest the sequence context-dependent direct mismatch repair of misincorporations opposite UVC-induced pyrimidine dimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号