首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the first step toward resolution of the higher-level relationships of the order Aulopiformes (Teleostei: Eurypterygii) using longer DNA sequences, we determined the complete mitochondrial DNA sequence for Aulopus japonicus (Aulopodidae). The entire genome was purified by gene amplification using a long PCR technique, and the products were subsequently used as templates for PCR with 63 fish-versatile and 3 species-specific primers that amplify contiguous, overlapping segments of the entire genome. Direct sequencing of the PCR products demonstrated that the genome (16 653 base pairs [bp]) contained the same 37 mitochondrial genes (2 ribosomal RNA, 22 transfer RNA, and 13 protein-coding genes) as found in other vertebrates, with the gene order identical to that in typical vertebrates. Maximum-parsimony analysis using nucleotide sequences from the concatenated 12 protein-coding genes (no third codon positions and excluding the ND6 gene) plus 22 tRNA genes (stem regions only) from eight teleosts placed A. japonicus in a reasonable phylogenetic position; those from individual protein-coding genes and the concatenated 22 tRNA genes alone, however, did not reproduce the expected phylogeny with few exceptions, probably owing to insufficient phylogenetic information in these smaller data sets. This result suggests that further taxonomic sampling and sequencing efforts may clarify limits and intra- and interrelationships of this morphologically and ecologically diverse group of fishes using mitochondrial genomic (mitogenomic) data. Received: August 31, 2000 / Revised: December 20, 2000 / Accepted: January 23, 2001  相似文献   

2.
Peng Z  Wang J  He S 《Gene》2006,376(2):290-297
The complete sequence of the 16,539 nucleotide mitochondrial genome from the single species of the catfish family Cranoglanididae, the helmet catfish Cranoglanis bouderius, was determined using the long and accurate polymerase chain reaction (LA PCR) method. The nucleotide sequences of C. bouderius mitochondrial DNA have been compared with those of three other catfish species in the same order. The contents of the C. bouderius mitochondrial genome are 13 protein-coding genes, two ribosomal RNA and 22 transfer RNA genes, and a non-coding control region, the gene order of which is identical to that observed in most other vertebrates. Phylogenetic analyses for 13 otophysan fishes were performed using Bayesian method based on the concatenated mtDNA protein-coding gene sequence and the individual protein-coding gene sequence data set. The competing otophysan topologies were then tested by using the approximately unbiased test, the Kishino-Hasegawa test, and the Shimodaira-Hasegawa test. The results show that the grouping ((((Characiformes, Gymnotiformes), Siluriformes), Cypriniformes), outgroup) is the most likely but there is no significant difference between this one and the other alternative hypotheses. In addition, the phylogenetic placement of the family Cranoglanididae among siluriform families was also discussed.  相似文献   

3.
Echinostoma hortense (Digenea: Echinostomatidae) is one of the intestinal flukes with medical importance in humans. However, the mitochondrial (mt) genome of this fluke has not been known yet. The present study has determined the complete mt genome sequences of E. hortense and assessed the phylogenetic relationships with other digenean species for which the complete mt genome sequences are available in GenBank using concatenated amino acid sequences inferred from 12 protein-coding genes. The mt genome of E. hortense contained 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 non-coding region. The length of the mt genome of E. hortense was 14,994 bp, which was somewhat smaller than those of other trematode species. Phylogenetic analyses based on concatenated nucleotide sequence datasets for all 12 protein-coding genes using maximum parsimony (MP) method showed that E. hortense and Hypoderaeum conoideum gathered together, and they were closer to each other than to Fasciolidae and other echinostomatid trematodes. The availability of the complete mt genome sequences of E. hortense provides important genetic markers for diagnostics, population genetics, and evolutionary studies of digeneans.  相似文献   

4.
The order Archaeognatha was an ancient group of Hexapoda and was considered as the most primitive of living insects. Two extant families (Meinertellidae and Machilidae) consisted of approximately 500 species. This study determined 3 complete mitochondrial genomes and 2 nearly complete mitochondrial genome sequences of the bristletail. The size of the 5 mitochondrial genome sequences of bristletail were relatively modest, containing 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and one control region. The gene orders were identical to that of Drosophila yakuba and most bristletail species suggesting a conserved genome evolution within the Archaeognatha. In order to estimate archaeognathan evolutionary relationships, phylogenetic analyses were conducted using concatenated nucleotide sequences of 13 protein-coding genes, with four different computational algorithms (NJ, MP, ML and BI). Based on the results, the monophyly of the family Machilidae was challenged by both datasets (W12 and G12 datasets). The relationships among archaeognathan subfamilies seemed to be tangled and the subfamily Machilinae was also believed to be a paraphyletic group in our study.  相似文献   

5.
Cheng Y  Xu T  Shi G  Wang R 《Marine Genomics》2010,3(3-4):201-209
The complete sequence of the 16,493 nucleotide mitochondrial genome from the single species of the family Sciaenidae, the miiuy croaker, Miichthys miiuy, was determined. The nucleotide sequences of M. miiuy mitochondrial DNA have been compared with those of three other Sciaenidae fishes. The contents of the M. miiuy mitochondrial genome are 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes, and two non-coding regions (L-strand replication origin and control region), the gene order of which is identical to that observed in most vertebrates. The L-strand replication origin of M. miiuy is not pyrimidine-rich compared to those of most bony fishes. Within the control region, we identified the extended termination associated sequence domain, the central conserved sequence block domain and the conserved sequence block domain, while the typical central conserved blocks CSB-D, -E and -F could not be detected in the three other Sciaenidae species. In the ML phylogenetic analyses, the monophyly of Pseudosciaeniae was not supported, which is against with the morphological results. Collichthys niveatus is most closely related to Larimichthys polyactis, and Collichthys and Larimichthys may be merged into one genus, based on the current datasets.  相似文献   

6.
Yamauchi M  Miya M  Nishida M 《Gene》2002,295(1):89-96
We determined the complete nucleotide sequence of the mitochondrial genome for a Japanese spiny lobster, Panulirus japonicus (Crustacea: Decapoda). The entire genome was amplified using long polymerase chain reaction, and the products were subsequently used as templates for direct sequencing using a primer-walking strategy. The genome (15,717 base pairs) contained the same 37 genes (two ribosomal RNA, 22 transfer RNA, and 13 protein-coding genes) plus the putative control region as found in other arthropods, with the gene order identical to that of typical arthropods. Preliminary phylogenetic analyses of selected arthropods using concatenated amino acid sequences of the 13 protein-coding genes strongly supported monophyly of Decapoda species and confidently rejected "Macroura", a conventional taxon that shares an elongated abdominal body.  相似文献   

7.

Background  

The order Tetraodontiformes consists of approximately 429 species of fishes in nine families. Members of the order exhibit striking morphological diversity and radiated into various habitats such as freshwater, brackish and coastal waters, open seas, and deep waters along continental shelves and slopes. Despite extensive studies based on both morphology and molecules, there has been no clear resolution except for monophyly of each family and sister-group relationships of Diodontidae + Tetraodontidae and Balistidae + Monacanthidae. To address phylogenetic questions of tetraodontiform fishes, we used whole mitochondrial genome (mitogenome) sequences from 27 selected species (data for 11 species were newly determined during this study) that fully represent all families and subfamilies of Tetraodontiformes (except for Hollardinae of the Triacanthodidae). Partitioned maximum likelihood (ML) and Bayesian analyses were performed on two data sets comprising concatenated nucleotide sequences from 13 protein-coding genes (all positions included; third codon positions converted into purine [R] and pyrimidine [Y]), 22 transfer RNA and two ribosomal RNA genes (total positions = 15,084).  相似文献   

8.
Peng R  Zeng B  Meng X  Yue B  Zhang Z  Zou F 《Gene》2007,397(1-2):76-83
The complete mitochondrial genome sequence of the giant panda, Ailuropoda melanoleuca, was determined by the long and accurate polymerase chain reaction (LA-PCR) with conserved primers and primer walking sequence methods. The complete mitochondrial DNA is 16,805 nucleotides in length and contains two ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and one control region. The total length of the 13 protein-coding genes is longer than the American black bear, brown bear and polar bear by 3 amino acids at the end of ND5 gene. The codon usage also followed the typical vertebrate pattern except for an unusual ATT start codon, which initiates the NADH dehydrogenase subunit 5 (ND5) gene. The molecular phylogenetic analysis was performed on the sequences of 12 concatenated heavy-strand encoded protein-coding genes, and suggested that the giant panda is most closely related to bears.  相似文献   

9.
Tetraodontiformes includes approximately 350 species assigned to nine families, sharing several reduced morphological features of higher teleosts. The order has been accepted as a monophyletic group by many authors, although several alternative hypotheses exist regarding its phylogenetic position within the higher teleosts. To date, acanthuroids, zeiforms, and lophiiforms have been proposed as sister-groups of the tetraodontiforms. The monophyly and sister-group status was investigated using whole mitochondrial genome (mitogenome) sequences from 44 purposefully-chosen species (26 sequences newly-determined during the study) that fully represent the major tetraodontiform lineages plus all the groups that have been hypothesized as being close relatives. Partitioned Bayesian analyses were conducted with the three datasets that comprised concatenated nucleotide sequences from 13 protein-coding genes (with and without, or with RY-coding, 3rd codon positions), plus 22 transfer RNA and two ribosomal RNA genes. The resultant trees were well resolved and largely congruent, with most internal branches being supported by high posterior probabilities. Mitogenomic data strongly supported the monophyly of tetraodontiform fishes, placing them as a sister-group of either Lophiiformes plus Caproidei or Caproidei only. The sister-group relationship between Acanthuroidei and Tetraodontiformes was statistically rejected using Bayes factors. These results were confirmed by a reanalysis of the previously published nuclear RAG1 gene sequences using the Bayesian method. Within the Tetraodontiformes, however, monophylies of the three superfamilies were not recovered and further taxonomic sampling and subsequent efforts should clarify these relationships.  相似文献   

10.
We determined the complete mitochondrial DNA (mtDNA) sequence of a fluke, Paramphistomum cervi (Digenea: Paramphistomidae). This genome (14,014 bp) is slightly larger than that of Clonorchis sinensis (13,875 bp), but smaller than those of other digenean species. The mt genome of P. cervi contains 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 2 non-coding regions (NCRs), a complement consistent with those of other digeneans. The arrangement of protein-coding and ribosomal RNA genes in the P. cervi mitochondrial genome is identical to that of other digeneans except for a group of Schistosoma species that exhibit a derived arrangement. The positions of some transfer RNA genes differ. Bayesian phylogenetic analyses, based on concatenated nucleotide sequences and amino-acid sequences of the 12 protein-coding genes, placed P. cervi within the Order Plagiorchiida, but relationships depicted within that order were not quite as expected from previous studies. The complete mtDNA sequence of P. cervi provides important genetic markers for diagnostics, ecological and evolutionary studies of digeneans.  相似文献   

11.
中华鳖线粒体基因组序列分析   总被引:11,自引:0,他引:11  
参照近源物种线粒体基因组序列,设计17对特异引物,采用PCR产物直接测序法测得中华鳖线粒体基因组全序列.初步分析其基因组特点和各基因的定位,用pDRAW32软件预测12种限制性酶对其的酶切图谱.结果表明,中华鳖线粒体基因组全长17364bp,核苷酸组成为35.23%A、27.26%T、25.73%C、11.78%G,包括13个蛋白质编码基因、2个rRNA基因、22个tRNA基因和1个非编码控制区.基于线粒体基因组编码的13个蛋白质的氨基酸序列,用NJ法和MP法构建系统进化树,分析6种龟鳖类动物之间的亲缘关系,与传统的系统分类基本一致,初步确定淡水龟科与海龟科的亲缘关系比与龟科的亲缘关系要近.  相似文献   

12.
13.
Balistoid fishes have a unique and reduced pelvic fin structure, which does not exhibit paired structures. The pelvic complex exhibits reductive trends, but its rudimentary structure was retained among balistoids, and its unidirectional and parsimonious reduction in more derived lineages has been hypothesized based on morphology. We investigated the evolution of pelvic complex reduction in balistoids using whole mitochondrial genome (mitogenome) data from 33 species (27 newly determined during the study) that represent the entire morphological diversity of balistoids. Partitioned maximum likelihood and Bayesian analyses were conducted with two datasets that comprised concatenated nucleotide sequences from 13 protein-coding genes (all positions included; third codon positions converted into purine [R] and pyrimidine [Y] [RY-coding]) plus 22 transfer RNA and two ribosomal RNA genes. The resultant trees were well resolved and largely congruent, with most internal branches having high support values. The mitogenomic datasets strongly supported monophylies of both balistids and monacanthids, but rejected previous hypotheses on the intra-relationships in each family. The present tree topology revealed that highly reduced pelvic complexes had multiple origins, and optimization of the traits on the resultant tree strongly suggested the non-unidirectional and independent reduction of pelvic complexes in balistoids. The evolution of balistoid pelvic structure is very different among fishes that exhibit its reductive trends, and this uniqueness in pelvic evolution may be a link to their reproductive behaviors.  相似文献   

14.
With about 24,000 extant species, teleosts are the largest group of vertebrates. They constitute more than 99% of the ray-finned fishes (Actinopterygii) that diverged from the lobe-finned fish lineage (Sarcopterygii) about 450 MYA. Although the role of genome duplication in the evolution of vertebrates is now established, its role in structuring the teleost genomes has been controversial. At least two hypotheses have been proposed: a whole-genome duplication in an ancient ray-finned fish and independent gene duplications in different lineages. These hypotheses are, however, based on small data sets and lack adequate statistical and phylogenetic support. In this study, we have made a systematic comparison of the draft genome sequences of Fugu and humans to identify paralogous chromosomal regions ("paralogons") in the Fugu that arose in the ray-finned fish lineage ("fish-specific"). We identified duplicate genes in the Fugu by phylogenetic analyses of the Fugu, human, and invertebrate sequences. Our analyses provide evidence for 425 fish-specific duplicate genes in the Fugu and show that at least 6.6% of the genome is represented by fish-specific paralogons. We estimated the ages of Fugu duplicate genes and paralogons using the molecular clock. Remarkably, the ages of duplicate genes and paralogons are clustered, with a peak around 350 MYA. These data strongly suggest a whole-genome duplication event early during the evolution of ray-finned fishes, probably before the origin of teleosts.  相似文献   

15.
S.F. Li    J.W. Xu    Q.L. Yang    C.H. Wang    Q. Chen    D.C. Chapman    G. Lu 《Journal of fish biology》2009,74(8):1787-1803
Based upon morphological characters, Silver carp Hypophthalmichthys molitrix and bighead carp Hypophthalmichthys nobilis (or Aristichthys nobilis ) have been classified into either the same genus or two distinct genera. Consequently, the taxonomic relationship of the two species at the generic level remains equivocal. This issue is addressed by sequencing complete mitochondrial genomes of H. molitrix and H. nobilis , comparing their mitogenome organization, structure and sequence similarity, and conducting a comprehensive phylogenetic analysis of cyprinid species. As with other cyprinid fishes, the mitogenomes of the two species were structurally conserved, containing 37 genes including 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA (tRNAs) genes and a putative control region (D-loop). Sequence similarity between the two mitogenomes varied in different genes or regions, being highest in the tRNA genes (98·8%), lowest in the control region (89·4%) and intermediate in the protein-coding genes (94·2%). Analyses of the sequence comparison and phylogeny using concatenated protein sequences support the view that the two species belong to the genus Hypophthalmichthys . Further studies using nuclear markers and involving more closely related species, and the systematic combination of traditional biology and molecular biology are needed in order to confirm this conclusion.  相似文献   

16.
大壁虎线粒体基因组全序列及其结构(英文)   总被引:3,自引:1,他引:2  
采用长PCR扩增、克隆和引物步行等方法,测定了大壁虎(Gekkogecko)线粒体基因组全序列。序列全长16435bp,共有13个蛋白质编码基因、2个rRNA基因和22个tRNA基因。基因组的组成、顺序、编码链的选择、tRNA的结构、较低的碱基G含量、对碱基T的偏好以及GC和AT偏斜,都与大部分脊椎动物相同或相近。但有些特征揭示了壁虎类的原始性蛋白质编码基因密码子第3位表现为对碱基A的偏好,更接近两栖类和鱼类而不是羊膜动物;标准终止密码子(TAA)只出现于3个蛋白质编码基因中,比大部分脊椎动物少。tRNA基因核苷酸长度为63~76nt,除了tRNACys和tRNASer(AGY)缺少D臂,其余的二级结构均呈典型的三叶草状。  相似文献   

17.
Elmerot C  Arnason U  Gojobori T  Janke A 《Gene》2002,295(2):163-172
The small nuclear genome of the pufferfish, Fugu rubripes (order Tetraodontiformes), makes this species highly interesting for genome research. In order to establish the phylogenetic position of the Tetraodontiformes relative to other teleostean orders that might also have a reduced nuclear genome size, we have sequenced the mitochondrial (mt) genome of the pufferfish. The gene order, nucleotide composition and evolutionary rate of the mt genome of the fugu correspond to those of other teleosts. This suggests that the evolution of this genome has not been affected by the processes that led to the dramatic reduction of the size of the nuclear genome of the fugu. The phylogenetic analyses, which were based on the concatenated amino acid sequences of twelve protein-coding mt genes, placed the fugu among the percomorphs. The affinities between the Tetraodontiformes and either the Perciformes or the Zeiformes were limited, however. The common notion of a separate euteleostean clade remained unsupported. The analyses did not support the traditional systematic understanding that the Clupeiformes constitute a basal teleostean lineage. In addition the findings strongly suggest that three teleostean orders, the Perciformes, Zeiformes and Scorpaeniformes, are paraphyletic.  相似文献   

18.
19.
Morphological data supports monotremes as the sister group of Theria (extant marsupials + eutherians), but phylogenetic analyses of 12 mitochondrial protein-coding genes have strongly supported the grouping of monotremes with marsupials: the Marsupionta hypothesis. Various nuclear genes tend to support Theria, but a comprehensive study of long concatenated sequences and broad taxon sampling is lacking. We therefore determined sequences from six nuclear genes and obtained additional sequences from the databases to create two large and independent nuclear data sets. One (data set I) emphasized taxon sampling and comprised five genes, with a concatenated length of 2,793 bp, from 21 species (two monotremes, six marsupials, nine placentals, and four outgroups). The other (data set II) emphasized gene sampling and comprised eight genes and three proteins, with a concatenated length of 10,773 bp or 3,669 amino acids, from five taxa (a monotreme, a marsupial, a rodent, human, and chicken). Both data sets were analyzed by parsimony, minimum evolution, maximum likelihood, and Bayesian methods using various models and data partitions. Data set I gave bootstrap support values for Theria between 55% and 100%, while support for Marsupionta was at most 12.3%. Taking base compositional bias into account generally increased the support for Theria. Data set II exclusively supported Theria, with the highest possible values and significantly rejected Marsupionta. Independent phylogenetic evidence in support of Theria was obtained from two single amino acid deletions and one insertion, while no supporting insertions and deletions were found for Marsupionta. On the basis of our data sets, the time of divergence between Monotremata and Theria was estimated at 231-217 MYA and between Marsupialia and Eutheria at 193-186 MYA. The morphological evidence for a basal position of Monotremata, well separated from Theria, is thus fully supported by the available molecular data from nuclear genes.  相似文献   

20.
We suggest an extension of connexin orthology relationships across the major vertebrate lineages. We first show that the conserved domains of mammalian connexins (encoding the N-terminus, four transmembrane domains and two extracellular loops) are subjected to a considerably more strict selection pressure than the full-length sequences or the variable domains (the intracellular loop and C-terminal tail). Therefore, the conserved domains are more useful for the study of family relationships over larger evolutionary distances. The conserved domains of connexins were collected from chicken, Xenopus tropicalis, zebrafish, pufferfish, green spotted pufferfish, Ciona intestinalis and Halocynthia pyriformis (two tunicates). A total of 305 connexin sequences were included in this analysis. Phylogenetic trees were constructed, from which the orthologies and the presumed evolutionary relationships between the sequences were deduced. The tunicate connexins studied had the closest, but still distant, relationships to vertebrate connexin 36, 39.2, 43.4, 45 and 47. The main structure in the connexin family known from mammals pre-dates the divergence of bony fishes, but some additional losses and gains of connexin sequences have occurred in the evolutionary lineages of subsequent vertebrates. Thus, the connexin gene family probably originated in the early evolution of chordates, and underwent major restructuring with regard to gene and subfamily structures (including the number of genes in each subfamily) during early vertebrate evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号