首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aggregation of poliovirus and reovirus by dilution in water.   总被引:11,自引:10,他引:1       下载免费PDF全文
Poliovirus and reovirus were found to aggregate into clumps of up to several hundred particles when diluted 10-fold into distilled water from a stock preparation of minimal aggregation in 0.05 M phosphate buffer, pH 7.2, plus 22 to 30% sucrose. Reovirus was also found to aggregate when diluted into phosphate-buffered saline. The aggregation was concentration dependent and did not occur when either virus was diluted into water 100-fold or greater. The aggregation of poliovirus was reversible by further addition of saline and produced a dispersed preparation of virus. Reovirus aggregation was not reversible. Both viruses aggregated when diluted into buffers at pH 5 and 3, and poliovirus aggregated at pH 6, and this aggregation of both viruses was reversible when returned to pH 7. Aggregation did not occur at alkaline pH values. Aggregation at low pH could be caused aggregation of either virus at pH 7. Calcium ions, however, were found to aggregate both viruses at a concentration of 0.01 M.  相似文献   

2.
Poliovirus and reovirus were found to aggregate into clumps of up to several hundred particles when diluted 10-fold into distilled water from a stock preparation of minimal aggregation in 0.05 M phosphate buffer, pH 7.2, plus 22 to 30% sucrose. Reovirus was also found to aggregate when diluted into phosphate-buffered saline. The aggregation was concentration dependent and did not occur when either virus was diluted into water 100-fold or greater. The aggregation of poliovirus was reversible by further addition of saline and produced a dispersed preparation of virus. Reovirus aggregation was not reversible. Both viruses aggregated when diluted into buffers at pH 5 and 3, and poliovirus aggregated at pH 6, and this aggregation of both viruses was reversible when returned to pH 7. Aggregation did not occur at alkaline pH values. Aggregation at low pH could be caused aggregation of either virus at pH 7. Calcium ions, however, were found to aggregate both viruses at a concentration of 0.01 M.  相似文献   

3.
Aggregation of human therapeutic antibodies represents a significant hurdle to product development. In a test across multiple antibodies, it was observed that IgG1 antibodies aggregated less, on average, than IgG2 antibodies under physiological pH and mildly elevated temperature. This phenomenon was also observed for IgG1 and IgG2 subclasses of anti‐streptavidin, which shared 95% sequence identity but varied in interchain disulfide connectivity. To investigate the structural and covalent changes associated with greater aggregation in IgG2 subclasses, soluble aggregates from the two forms of anti‐streptavidin were isolated and characterized. Sedimentation velocity analytical ultracentrifugation (SV‐AUC) measurements confirmed that the aggregates were present in solution, and revealed that the IgG1 aggregate was composed of a predominant species, whereas the IgG2 aggregate was heterogeneous. Tertiary structural changes accompanied antibody aggregation as evidenced by greater ANS (8‐Anilino‐1‐naphthalene sulfonic acid) binding to the aggregates over monomer, and differences in disulfide character and tryptophan environments between monomer, oligomer and aggregate species, as observed by near‐UV circular dichroism (CD). Differences between subclasses were observed in the secondary structural changes that accompanied aggregation, particularly in the intermolecular β‐sheet and turn structures between the monomer and aggregate species. Free thiol determination showed ~2.4‐fold lower quantity of free cysteines in the IgG1 subclass, consistent with the 2.4‐fold reduction in aggregation of the IgG1 form when compared with IgG2 under these conditions. These observations suggested an important role for disulfide bond formation, as well as secondary and tertiary structural transitions, during antibody aggregation. Such degradations may be minimized using appropriate formulation conditions.  相似文献   

4.
The self-assembly of collagen molecules   总被引:2,自引:0,他引:2  
L Yuan  A Veis 《Biopolymers》1973,12(6):1437-1444
The aggregation of native acid-soluble collagen (N-ASC) and of pronase-treated acid soluble collagen (P-ASC) was examined in solution under conditions which varied from those of minimum collagen-collagen interaction to those leading to incipient fiber formation. Molecular weights and weight distributions were determined in the analytical ultracentrifuge using the Yphantis high speed sedimentation equilibrium and Aarchiblad approach-to-equilibrim techniques. The aggregation was pH and ionic strength dependent in each case. Under conditions of minimum aggregation (low pH, low ionic strength), N-ASC showed the presence of permant aggregates. At higher pH and ionic strength, a higher fraction of aggregate was formed but these were of the same charcter and molecular weight as the permanent aggregates. The aggregates were of a single molecular size, with a weight of 1.5 × 106 daltons, compared with a monomer collagen weight of 3.1 × 105 daltons. The P-ASC formed aggregates also but to a much lower extent and the maximum aggregate size corresponded to dimers in molecular weight. These data show the major importance of molecular end-regions in collagen aggregation to form native type fibers and, by virtue of the discrete size of the N-ASC aggregates, support the microfibrillar hypothesis for the assembly of collagen fibrills.  相似文献   

5.
Alpha-synuclein is the major component of Lewy bodies and Lewy neurites, which are granular and filamentous protein inclusions that are the defining pathological features of several neurodegenerative conditions such as Parkinson's disease. Fibrillar aggregates formed from alpha-synuclein in vitro resemble brain-derived material, but the role of such aggregates in the etiology of Parkinson's disease and their relation to the toxic molecular species remain unclear. In this study, we investigated the effects of pH and salt concentration on the in vitro assembly of human wild-type alpha-synuclein, particularly with regard to aggregation rate and aggregate morphology. Aggregates formed at pH 7.0 and pH 6.0 in the absence of NaCl and MgCl(2) were fibrillar; the pH 6.0 fibrils displayed a helical twist, as clearly evident by scanning force and electron microscopy. Incubations at pH 7.0 remained transparent during the process of aggregation and exhibited strong thioflavin-T and weak 8-anilino-1-naphthalenesulfonate (ANS) binding; furthermore, they were efficient in seeding fibrillization of fresh solutions. In contrast, incubating alpha-synuclein at low pH (pH 4.0 or pH 5.0) resulted in the rapid formation of turbid suspensions characterized by strong ANS binding, reduced thioflavin-T binding and reduced seeding efficiency. At pH 4.0, fibril formation was abrogated; instead, very large aggregates (dimensions approximately 100 microm) of amorphous appearance were visible by light microscopy. As with acidic conditions, addition of 0.2M NaCl or 10mM MgCl(2) to pH 7.0 incubations led to a shorter aggregation lag time and formation of large, amorphous aggregates. These results demonstrate that the morphology of alpha-synuclein aggregates is highly sensitive to solution conditions, implying that the fibrillar state does not necessarily represent the predominant or most functionally significant aggregated state under physiological conditions.  相似文献   

6.
One of the clinical manifestations of Alzheimer's disease is the deposition of the 39-43 residue amyloid-beta (A beta) peptide in aggregated fibrils in senile plaques. Characterization of the aggregation behavior of A beta is one of the critical issues in understanding the role of A beta in the disease process. Using solution hydrodynamics, A beta was observed to form three types of species in phosphate-buffered saline: insoluble aggregates with sedimentation coefficients of approximately 50,000 S and molecular masses of approximately 10(9) Da, "soluble aggregates" with sedimentation coefficients of approximately 30 S and masses of approximately 10(6) Da, and monomer. When starting from monomer, the aggregation kinetics of A beta 1-40 (A beta 40) and A beta 1-42 (A beta 42), alone and in combination, reveal large differences in the tendency of these peptides to aggregate as a function of pH and other solution conditions. At pH 4.1 and 7.0-7.4, aggregation is significantly slower than at pH 5 and 6. Under all conditions, aggregation of the longer A beta 42 was more rapid than A beta 40. Oxidation of Met-35 to the sulfoxide in A beta 40 enhances the aggregation rate over that of the nonoxidized peptide. Aggregation was found to be dependent upon temperature and to be strongly dependent on peptide concentration and ionic strength, indicating that aggregation is driven by a hydrophobic effect. When A beta 40 and A beta 42 are mixed together, A beta 40 retards the aggregation of A beta 42 in a concentration-dependent manner. Shorter fragments have a decreasing ability to interfere with A beta 42 aggregation. Conversely, the rate of aggregation of A beta 40 can be significantly enhanced by seeding slow aggregating solutions with preformed aggregates of A beta 42. Taken together, the inhibition of A beta 42 aggregation by A beta 40, the seeding of A beta 40 aggregation by A beta 42 aggregates, and the chemical oxidation of A beta 40 suggest that the relative abundance and rates of production of different-length A beta and its exposure to radical damage may be factors in the accumulation of A beta in plaques in vivo.  相似文献   

7.
Prion diseases are associated with the structural conversion of prion protein (PrP) to a β-sheet-rich aggregate, PrPSc. Previous studies have indicated that a reduction of the disulfide bond linking C179 and C214 of PrP yields an amyloidlike β-rich aggregate in vitro. To gain mechanistic insights into the reduction-induced aggregation, here I characterized how disulfide bond reduction modulates the protein folding/misfolding landscape of PrP, by examining 1) the equilibrium stabilities of the native (N) and aggregated states relative to the unfolded (U) state, 2) the transition barrier separating the U and aggregated states, and 3) the final structure of amyloidlike misfolded aggregates. Kinetic and thermodynamic experiments revealed that disulfide bond reduction decreases the equilibrium stabilities of both the N and aggregated states by ~3 kcal/mol, without changing either the amyloidlike aggregate structure, at least at the secondary structural level, or the transition barrier of aggregation. Therefore, disulfide bond reduction modulates the protein folding/misfolding landscape by entropically stabilizing disordered states, including the U and transition state of aggregation. This also indicates that the equilibrium stability of the N state, but not the transition barrier of aggregation, is the dominant factor determining the reduction-induced aggregation of PrP.  相似文献   

8.
We have investigated the aggregation of protein L in 25% (vol/vol) TFE and 10 mM HCl. Under both conditions, aggregates adopt a fibrillar structure and bind dyes Congo Red and Thioflavin T consistent with the presence of amyloid fibrils. The kinetics of aggregation in 25% TFE suggest a linear-elongation mechanism with critical nucleus size of either two or three monomers. Aggregation kinetics in 10 mM HCl show a prolonged lag phase prior to a rapid increase in aggregation. The lag phase is time-dependent, but the time dependence can be eliminated by the addition of pre-formed seeds. Disaggregation studies show that for aggregates formed in TFE, aggregate stability is a strong function of aggregate age. For example, after 200 min of aggregation, 40% of the aggregation reaction is irreversible, while after 3 days over 60% is irreversible. When the final concentration of the denaturant, TFE, is reduced from 5% to 0, the amount of reversible aggregation doubles. Disaggregation studies of aggregates formed in TFE and 10 mM HCl reveal a complicated effect of pH on aggregate stability.  相似文献   

9.
Differentiated chondrocytes, isolated from chick embryo cartilage, were cultured in monolayer, as aggregate or pellet. Aggregation of chondrocytes was accomplished by incubating 2 × 105 cells in a 5-μl drop of culture medium. Under all three conditions, the cells remained healthy and proliferated during culture. However, matrix production, as indicated by incorporation of [35S]sulphate into glycosaminoglycans, was greater in aggregated chondrocytes than in monolayers or pellets. In addition, aggregates consisting of a well defined number of cells, could easily be manipulated for experiments. Therefore aggregates provide a favourable model system to study factors modulating the metabolism of chondrocytes.  相似文献   

10.
The instability of aqueous solutions of poly(α-L -glutamic acid) (PGA) at low pH is due to two distinguishable phenomena: precipitation, favored above 40°C., and aggregation, favored below 20°C. The aggregated form of PGA can be isolated by gel permeation chromatography. Both aggregation and precipitation increase with decreasing pH, i.e., with decreasing ionization of the side chain carboxyl groups. Temperature-induced aggregation and disaggregation give rise to a reproducible hysteresis loop which can be followed by optical rotation, light scattering, sedimentation, viscosity, and chromatography. Hysteresis has been observed with different PGA samples, and in several aqueous buffered or unbuffered solvents and organic-aqueous solvent mixtures and in the pH range 4.1–4.5. Aggregation manifests itself as an increase in negative optical rotation in the visible and ultraviolet spectral range. The specific relation at 233 mμ is sensitive to aggregation and also reflects the hysteresis. Measurements of optical rotatory dispersion indicate that a0 reflects the hysteresis but b0 does not, the latter revealing only reversible changes with aggregation and disaggregation. The helix-coil equilibrium is apparently unperturbed by aggregation, as is the thermal stability of the helix structure. For fully aggregated PGA it is estimated that a0 increases by about 300 degrees, which suggests that a0 may be a sensitive parameter to measure aggregation in other systems. The rate of aggregation increases with decreasing temperature. The disaggregation, upon heating, is more rapid. However, kinetics measurements have not yet been done. The temperature M at which all aggregates are disrupted increases with decreasing pH, but is independent of total PGA concentration, at constant pH. No molecular weight dependence of M was detected in the range 20–100 × 103. The shape and size of the hysteresis loop depends upon pH and molecular weight, which is interpreted as a dependence on the extent of aggregation. One branch of the loop, representing the helix–coil transition of isolated molecules, is reversible, while the others, representing the formation and disruption of the aggregates, are not. The system exhibits both ascending and descending scanning curves, which are typical of a true hysteresis.  相似文献   

11.
The aggregation of mixtures of two dissimilar viruses, poliovirus I (Mahoney) and reovirus III (Dearing), was followed by electron microscopy under conditions known to induce either aggregation or dispersion of each virus separately. Neither virus aggregated at pH 7 in an appropriate buffer, and no mixed aggregates were formed. Under conditions of lowered ionic strength (by dilution into distilled water) poliovirus became aggregated, whereas reovirus did not, and again no mixed aggregates were formed. At pH 6, however, poliovirus again aggregated and, although reovirus did not, it attached to poliovirus aggregates. Thus, some inducement toward aggregation was necessary to cause formation of mixed aggregates. This inducement probably took the form of a reduction of the ionic double layer surrounding the particles, which is known to occur at low pH. At pH 5 and below both viruses aggregated severely, and large mixed aggregates were formed. These mixed aggregates could be broken up by neutralization of the suspension, although small aggregates of poliovirus remained. Reovirus showed a marked tendency to attach to large clumps of poliovirus, but the reverse tendency was not observed. The results indicate that mixed aggregates may be of significance in the isolation of viruses from water or wastewater.  相似文献   

12.
Viral aggregation: mixed suspensions of poliovirus and reovirus.   总被引:1,自引:0,他引:1       下载免费PDF全文
The aggregation of mixtures of two dissimilar viruses, poliovirus I (Mahoney) and reovirus III (Dearing), was followed by electron microscopy under conditions known to induce either aggregation or dispersion of each virus separately. Neither virus aggregated at pH 7 in an appropriate buffer, and no mixed aggregates were formed. Under conditions of lowered ionic strength (by dilution into distilled water) poliovirus became aggregated, whereas reovirus did not, and again no mixed aggregates were formed. At pH 6, however, poliovirus again aggregated and, although reovirus did not, it attached to poliovirus aggregates. Thus, some inducement toward aggregation was necessary to cause formation of mixed aggregates. This inducement probably took the form of a reduction of the ionic double layer surrounding the particles, which is known to occur at low pH. At pH 5 and below both viruses aggregated severely, and large mixed aggregates were formed. These mixed aggregates could be broken up by neutralization of the suspension, although small aggregates of poliovirus remained. Reovirus showed a marked tendency to attach to large clumps of poliovirus, but the reverse tendency was not observed. The results indicate that mixed aggregates may be of significance in the isolation of viruses from water or wastewater.  相似文献   

13.
Sasahara K  Yagi H  Sakai M  Naiki H  Goto Y 《Biochemistry》2008,47(8):2650-2660
Amyloid nucleation through agitation was studied with beta2-microglobulin, which is responsible for dialysis-related amyloidosis, in the presence of salt under acid and neutral pH conditions. First, the aggregation of beta2-microglobulin in NaCl solutions was achieved by mildly agitating for 24 h at 37 degrees C protein solutions in three different states: acid-unfolded, salt-induced protofibrillar, and native. The formation of aggregates was confirmed by an increase in light scattering intensity of the solutions. Then, the aggregated samples were incubated without agitation at 37 degrees C for up to 25-45 days. The structural changes in the aggregated state during the incubation period were examined by means of fluorescence spectroscopy with thioflavin T, circular dichroism spectroscopy, and electron microscopy. The results revealed that all the samples in the different states produced a mature amyloid nucleus upon agitation, after which the fibrils elongated without any detectable lag phase during the incubation, with the acid-unfolded protein better suited to undergoing the structural rearrangements necessary to form amyloid fibrils than the more structured forms. The amount of aggregate including the amyloid nucleus produced by agitation from the native conformation at neutral pH was estimated to be about 9% of all the protein by an analysis using ultracentrifugation. Additionally, amyloid nucleation by agitation was similarly achieved for a different protein, hen egg-white lysozyme, in 0.5 M NaCl solution at neutral pH. Taken together, the agitation-treated aggregates of both proteins have a high propensity to produce an amyloid nucleus even at neutral pH, providing evidence that the aggregation pathway involves amyloid nucleation under entirely native conditions.  相似文献   

14.
beta-amyloid peptide (Abeta) is the primary constituent of senile plaques, a defining feature of Alzheimer's disease. Aggregated Abeta is toxic to neurons, but the mechanism of toxicity remains unproven. One proposal is that Abeta toxicity results from relatively nonspecific Abeta-membrane interactions. We hypothesized that Abeta perturbs membrane structure as a function of the aggregation state of Abeta. Toward exploring this hypothesis, Abeta aggregate size and hydrophobicity were characterized using dynamic and static light scattering and 1,1-bis(4-anilino)naphthalene-5,5-disulfonic acid (bis-ANS) fluorescence. The effect of Abeta aggregation state on the membrane fluidity of unilamellar liposomes was assessed by monitoring the anisotropy of the membrane-embedded fluorescent dye, 1,6-diphenyl-1,3,5-hexatriene (DPH). Unaggregated Abeta at pH 7 did not bind bis-ANS and had little to no effect on membrane fluidity. More significantly, Abeta aggregated at pH 6 or 7 decreased membrane fluidity in a time- and dose-dependent manner. Aggregation rate and surface hydrophobicity were considerably greater for Abeta aggregated at pH 6 than at neutral pH and were strongly correlated with the extent of decrease in membrane fluidity. Prolonged (7 days) Abeta aggregation resulted in a return to near-baseline levels in both bis-ANS fluorescence and DPH anisotropy at pH 7 but not at pH 6. The addition of gangliosides to the liposomes significantly increased the DPH anisotropy response. Hence, self-association of Abeta monomers into aggregates exposes hydrophobic sites and induces a decrease in membrane fluidity. Abeta aggregate-induced changes in membrane physical properties may have deleterious consequences on cellular functioning.  相似文献   

15.
Aggregation of recombinant bovine granulocyte colony-stimulating factor (rbG-CSF) was examined by the techniques of size exclusion chromatography (SEC), multiangle laser light scattering (MALS), and SDS-PAGE. Solutions of rbG-CSF in different buffers and pH were exposed to an elevated temperature of 50°C to induce aggregation. The formation of noncovalent soluble aggregates with molecular weight in the millions of Daltons was observed when a solution of rbG-CSF at pH 2.9 was exposed to 50°C. Precipitated protein was the main product of rbG-CSF aggregation in citrate and phosphate buffers at a pH greater than 4. It was demonstrated that precipitant was a mixture of covalent and noncovalent aggregates. The ratio of covalent to noncovalent binding increased with increase in pH of the protein solution. The covalent binding that occurred was primarily due to disulfide linkages via intermolecular disulfide scrambling as demonstrated by SDS-PAGE.  相似文献   

16.
BackgroundDJ-1, a small ubiquitously expressed protein implicated in several pathways associated with Parkinson's disease pathogenesis, has been found to interact with α-synuclein and modulate its aggregation, yet the exact mechanisms remain unclear.MethodsThe stability and aggregation properties of wild-type DJ-1 under denaturing conditions, such as low pH, high temperature, presence of denaturants were investigated. The interaction between DJ-1 and α-synuclein was tested by SDS-PAGE gel and native gel electrophoresis and by size-exclusion HPLC. Fibrillization was monitored by thioflavin T fluorescence assays and amorphous aggregation was followed by light scattering measurements. The morphology of aggregated species was observed by transmission electron microscopy and atomic force microscopy. Protein secondary structures were characterized by far-UV circular dichroism.ResultsDJ-1 fibrillization was first observed at low pH or by adding denaturants. Amorphous aggregates formed at neutral pH, and the aggregation was dramatically accelerated by elevated temperature and the presence of α-synuclein. Aggregation of DJ-1 were enhanced by heating and perturbed by the co-occurrence of α-synuclein but strong interactions between the two proteins were not found.ConclusionsVarying environmental factors led to different aggregation pathways of DJ-1 although a simulated physiological condition would not lead to fibrillization. DJ-1 co-aggregating with α-synuclein may result from weak hydrophobic interaction and DJ-1 exhibited chaperon-like activity in the initial time of α-synuclein aggregation at high temperature.General significanceThis research on DJ-1 presented its aggregation behavior under denaturing conditions and interaction mechanism with α-synuclein that may help to decipher its potential neuroprotective or neurotoxic role in Parkinson's disease.  相似文献   

17.
Cell aggregates may be useful components of artificial organs and mammalian cell bioreactors, but many cells do not naturally aggregate. In a previous report,(4) we described a method for promoting neural cell aggregation by addition of water-soluble conjugates of cell adhesion peptides, containing the three amino acid sequence Arg-Gly-Asp (RGD), and poly(ethylene glycol) (PEG). Here, we examined the mechanism of conjugate-induced aggregation using fibroblasts and a variety PEG-peptide conjugates. Aggregation was monitored during rotation culture of fibroblasts in the presence of unconjugated GRGDY and PEG; monofunctional (PEG-GRGDY) and bifunctional (GRGDY-PEG-GRGDY) conjugates; and bifunctional conjugates produced with a similar, but non-cell-binding, peptide (GRGEY-PEG-GRGEY). GRGDY-PEG-GRGDY conjugates induced rapid and pronounced fibroblast aggregation that was dose-dependent; at the highest concentration tested (5 mg/mL GRGDY-PEG-GRGDY), cell aggregates were produced more quickly ( approximately 1 h) and were significantly larger at 24 h (mean radius approximately 66 mum) than at slightly lower concentrations (1.7 and 3.3 mg/mL). Aggregation with GRGDY-PEG-GRGDY was completely inhibited by dissolved GRGDY (1.7 mg/mL). Neither unmodified GRGDY, unmodified PEG, PEG-GRGDY, nor GRGEY-PEG-GRGEY conjugates led to significant aggregation. The extent of aggregation depended on PEG molecular weight: conjugates with 3400 M(w) PEG produced aggregates with significantly larger mean radius than conjugates with 20,000 M(w) PEG. When 1N-8A fibroblasts, genetically engineered to produce recombinant nerve growth factor (NGF), were aggregated with GRGDY-PEG-GRGDY, aggregated cells produced more NGF per cell than nonaggregated cells. Aggregation of cells may lead to improved cell function, such as the increase in NGF production observed here, which could be useful in large-scale cell culture and construction of artificial organs or tissue transplants for tissue engineering. (c) 1996 John Wiley & Sons, Inc.  相似文献   

18.
Heat-set gels and aggregates from beta-lactoglobulin (beta-Lg), one of the major globular proteins from milk, have been studied on a molecular distance scale using negative-staining transmission electron microscopy (TEM), wide-angle X-ray diffraction (WAXD), and Fourier transform infrared spectroscopy (FTIR). The microscopy showed long linear aggregates forming in solutions at pH 2 (and sometimes 2.5) after prolonged heating. While there appeared to be no differences in aggregates formed under these conditions in H(2)O as compared with D(2)O, at all other pH and pD values, and in the presence of added salt, much shorter linear aggregates were formed. These became slightly more extended the further the pH was removed from pI. Wide-angle X-ray diffraction (WAXD) showed a diffuse beta-sheet halo at 2θ=19 degrees in patterns for both dried native and aggregated protein (irrespective of pH) with only a small change (sharpening) of this feature on heat treatment. Solution FTIR spectra, measured at pD=2, 2.5, 3, and 7, during heating, indicated shoulder development at 1612 cm(-1) in the carbonyl-stretching Amide I region diagnostic of a modest increase in intermolecular beta-sheet. In terms of the shoulder size, no distinctions could be made between acid and neutral aggregate structures. At all pHs, beta-lactoglobulin showed only limited secondary and tertiary structural changes in aggregation, in contrast to previous studies of insulin aggregation, where highly ordered crystalline fibrils were indicated. The current work has implications both in structural studies of food biopolymers and in ongoing studies of pathological protein self-assembly in disease states, such as spongiform encephalopathies.  相似文献   

19.
The processes of aggregation and refolding of recombinant human creatine kinase (rHCK) were studied. Most of the rHCK expressed in E. coli was present in the insoluble traction and it could be solubilized in 6 M urea solution. Unfolding of rHCK in 6 M urea showed biphasic kinetic courses (kappa1 = 6.5 x 10(-3) s(-1); kappa2 = 0.54 x 10(-3) s(-1)) as observed by maximum fluorescence wavelength change. During refolding of the rHCK dissolved in urea, significant aggregation was noticed following first-order kinetics. Aggregation rate constants were influenced by the concentration of NaCl, which increased the difference in transition-free energy (deltadeltaG), showing that stabilization of folding intermediates by NaCl could efficiently reduce the formation of insoluble aggregates. Formations of aggregate were also reduced by adjusting temperature, pH, and concentration of rHCK. Refolding of rHCK under the optimized condition which prevented the aggregation also showed multi-kinetic phases (kappa1 = 3.0 x 10(-3) s(-1); kappa2 = 0.64 x 10(-3) s(-1)). Under optimized conditions applied in this study, rHCK could correctly refold retrieving the high specific enzymatic activity.  相似文献   

20.
The gel-filtration behaviour of calf thymus histone fraction F2(b) was studied at three different salt concentrations (0.01m-, 0.10m- and 1.00m-sodium chloride) and two different pH ranges (pH3–4 and pH6.7–7.1). Other histone fractions [F1, F2(a) and F3] were also utilized to assist interpretation of the data. It was found that the Stokes radius of histone fraction F2(b) was not significantly changed when the salt concentration was increased, implying that the aggregation of the individual histone molecules (Edwards & Shooter, 1969) resulted in only relatively minor changes in the hydrodynamic volume. Aggregation would appear to be due to the salting out of hydrophobic regions giving rise, in the aggregate, to a compact core of hydrophobic groups from which protrude the remaining basic parts of the molecule. Repulsion between charged groups on the basic regions of individual histone molecules would give the aggregate approximately spherical symmetry, the diameter of the aggregate approximating to the length of a single histone molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号