首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根据DNA随机扩增多态性(RandomAmplifiedPolymorphicDNA,简RAPD)分子标记技术设计鉴别引物,建立一种快速、准确检测病人体内新发现的假单胞菌菌株的分子生物学方法.采用RAPD分析方法对该菌种的对照菌株AcinetobactercalcoaceticusKHW14(简称A.calcoaceticusKHW14)和新分离的菌株Acinetobactercalcoaceticus(简称A.calcoaceticus)进行指纹分析,依据两菌株的差异序列设计两对引物,并建立最佳的PCR扩增体系,产物经1.2%琼脂糖凝胶电泳得菌株特异性电泳图谱.此图谱可作为鉴定两菌株的标准图谱,RAPD分析方法具有良好的重复性,同时也进一步验证了两菌株的同源性.  相似文献   

2.
A transformation system with plasmids was developed for Bacillus subtilis NB22, an antibiotic iturin producing strain. Treatment of B. subtilis NB22 with 4 M KCl was effective for the induction of competence, followed by uptake of plasmid DNA in the presence of polyethylene glycol. The efficiency of transformation of this bacterium with pC194 and pUB110 was 4.1 X 10(3) and 1.5 X 10(3) transformants per micrograms DNA, respectively and the transformation frequency was 3.3 X 10(-3) and 7.2 X 10(-4), transformants per viable cell, respectively. This method was much faster and three orders of magnitude more efficient in transformation efficiency than protoplast transformation methods.  相似文献   

3.
Localized sets of random point mutations generated by PCR amplification can be transferred efficiently to the chromosome of Acinetobacter ADP1 (also known as strain BD413) by natural transformation. The technique does not require cloning of PCR fragments in plasmids: PCR-amplified DNA fragments are internalized by cells and directly incorporated into their genomes by homologous recombination. Previously such procedures for random mutagenesis could be applied only to Acinetobacter genes affording the selection of mutant phenotypes. Here we describe the construction of a vector and recipient that allow for mutagenesis, recovery, and expression of heterologous genes that may lack a positive selection. The plasmid carries an Acinetobacter chromosomal segment interrupted by a multiple cloning site next to a kanamycin resistance marker. The insertion of heterologous DNA into the multiple cloning site prepares the insert as a target for PCR mutagenesis. PCR amplifies the kanamycin resistance marker and a flanking region of Acinetobacter DNA along with the insert of heterologous DNA. Nucleotide sequence identity between the flanking regions and corresponding chromosomal segments in an engineered Acinetobacter recipient allows homologous recombination of the PCR-amplified DNA fragments into a specific chromosomal docking site from which they can be expressed. The recipient strain contains only a portion of the kanamycin resistance gene, so donor DNA containing both this gene and the mutagenized insert can be selected by demanding growth of recombinants in the presence of kanamycin. The effectiveness of the technique was demonstrated with the relatively GC-rich Pseudomonas putida xylE gene. After only one round of PCR amplification (35 cycles), donor DNA produced transformants of which up to 30% carried a defective xylE gene after growth at 37 degrees C. Of recombinant clones that failed to express xylE at 37 degrees C, about 10% expressed the gene when grown at 22 degrees C. The techniques described here could be adapted to prepare colonies with an altered function in any gene for which either a selection or a suitable phenotypic screen exists.  相似文献   

4.
Kuroki A  Ohtani N  Tsuge K  Tomita M  Itaya M 《Gene》2007,399(1):72-80
The Bacillus subtilis GenoMe (BGM) vector was designed as a versatile vector for the cloning of giant DNA segments. Cloned DNA in the BGM can be retrieved to a plasmid using our Bacillus recombinational transfer (BReT) method that takes advantage of competent cell transformation. However, delivery of the plasmid to a different B. subtilis strain by the normal transformation method is hampered by DNA size-related inefficiency. Therefore, we designed a novel method, conjugational plasmid-mediated DNA retrieval and transfer (CReT) from the BGM vector, and investigated conjugational transmission to traverse DNA between cells to circumvent the transformation-induced size limitation. pLS20, a 65-kb plasmid capable of conjugational transfer between B. subtilis strains, was modified to retrieve DNA cloned in the BGM vector by homologous recombination during normal culture. As the plasmid copy number was estimated to be 3, the retrieval plasmid was selected using increased numbers of marker genes derived from the retrieved DNA. We applied this method to retrieve Synechocystis genome segments up to 90 kb in length. We observed retrieved plasmid transfers between B. subtilis strains by conjugation in the absence of structural alterations in the DNA fragment. Our observations extend DNA transfer protocols over previously exploited size ranges.  相似文献   

5.
E M Rubin  G A Wilson  F E Young 《Gene》1980,10(3):227-235
The gene from Escherichia coli encoding thymidylate synthetase was cloned in the plasmid pBR322. The resulting chimeric plasmid, pER2, was effective in transforming both E. coli and Bacillus subtilis to thymine prototrophy. Uncloned linear E. coli chromosomal DNA was unable to transform thymine-requiring strains of B. subtilis to thymine independence. Linearization of the chimeric plasmid, pER2, with restriction enzymes markedly diminished its ability to transform B. subtilis auxotrophs. The Thy+ transformants derived from the transformation of B. subtilis with pER2 DNA did not contain detectable extrachromosomal DNA as demonstrated by Southern hybridization patterns and centrifugation in CsCl gradients of DNA isolated from B. subtilis colonies transformed with the chimeric plasmid. We conclude that the DNA from the chimeric plasmid was integrated into the chromosome of B. subtilis, demonstrating that extensive homology is not required for the integration of foreign DNA. This is the first reported case of a gene from a Gram-negative bacterium functioning in a Gram-positive organism.  相似文献   

6.
Twenty-six Acinetobacter calcoaceticus proline auxotrophs were isolated after ethyl methane sulfonate mutagenesis. Studies using the efficient transformation system of this organism indicate that the mutations comprise therr genetically distinct groups.  相似文献   

7.
目的:在乙酸钙不动杆菌Y2004中表达山梨糖脱氢酶。方法:将酮古龙酸菌山梨糖脱氢酶基因sdh以及从pWH1266质粒上扩增的复制原点ori先后酶切连接到pBBR1MCS2质粒上,构建pBBR1MCS2-ori-sdh穿梭质粒;再以pBBR1MCS2-ori-sdh/DH5α为供体菌、乙酸钙不动杆菌Y2004为受体菌、pRK2013/HB101为辅助菌进行三亲本接合转移;从氨苄青霉素和卡那霉素双抗平板上挑取转化子进行培养,通过菌落PCR和提取质粒复转筛选阳性克隆,再通过活性电泳和体外糖酸转化实验检测阳性克隆的山梨糖脱氢酶活性。结果:构建了pBBRMCS2-ori-sdh质粒并转入乙酸钙不动杆菌Y2004中,活性电泳和体外实验证实阳性克隆具有山梨糖脱氢酶活性。结论:实现了山梨糖脱氢酶在乙酸钙不动杆菌Y2004中的表达,为单菌糖酸转化的进一步研究奠定了基础。  相似文献   

8.
Recombinant plasmid DNA cloned in E. coli via the bifunctional vector pDH5060 suffered deletions when returned to B. subtilis. However, DNA preparations of identical chimeras containing homologous or heterologous sequences stably transformed B. subtilis at high efficiency when isolated from B. subtilis. The vector pDH5060, however, was not affected and could be stably shuttled between E. coli and B. subtilis at high frequency. These problems affected the transfer of clone pools and individual chimeras, irrespective of the restriction or recombination phenotype of B. subtilis recipients. Deleted chimeras lost at least one end of cloned inserts, and in most cases, flanking plasmid sequences. Single plasmid forms (intact or deleted) were isolated from several hundred individual Cmr-transformants this suggests that events leading to deletion of chimeric plasmid DNA occur during transformation by restriction of unmodified insert sequences propagated in the intermediate host, E. coli. This conclusion is discussed with regard to the mechanism of plasmid transformation in B. subtilis.  相似文献   

9.
A highly efficient procedure for the transformation of Bacillus thuringiensis and Bacillus subtilis using covalently closed circular plasmid DNA was developed by using the small Staphylococcus aureus plasmid pC194 and electroporation. We have achieved transformation efficiencies in B. thuringiensis subsp. kurstaki (HD-73) greater than 5 x 10(6) transformants/micrograms plasmid DNA. The electro-transformation (or electroporation) procedure also worked with B. subtilis 168 although at a 200-fold less level of efficiency. The results indicated that the plasmid exists in double and single-stranded forms both in B. subtilis and B. thuringiensis. A second single-stranded species was also observed in both species. This technique may prove to be applicable to other members of the genus Bacillus.  相似文献   

10.
A plasmid useful for locating the chromosomal site of cloned DNA fragments that lack intrinsic genetic activity, for insertional mutagenesis, for single-copy complementation, and for dominance studies was constructed. Some plasmids containing Bacillus subtilis DNA were only active in transformation when the tetracycline resistance determinant of the plasmid was inactivated. The results suggest that production of the tetracycline gene product is lethal to B. subtilis.  相似文献   

11.
Natural genetic transformation in the bacterium Bacillus subtilis provides a model system to explore the evolutionary function of sexual recombination. In the present work, we study the response of transformation to UV irradiation using donor DNAs that differ in sequence homology to the recipient's chromosome and in the mechanism of transformation. The four donor DNAs used include homologous-chromosomal-DNA, two plasmids containing a fragment of B. subtilis trp+ operon DNA and a plasmid with no sequence homology to the recipient cell's DNA. Transformation frequencies for these DNA molecules increase with increasing levels of DNA damage (UV radiation) to recipient cells, only if their transformation requires homologous recombination (i.e. is recA+-dependent). Transformation with non-homologous DNA is independent of the recipient's recombination system and transformation frequencies for it do not respond to increases in UV radiation. The transformation frequency for a selectable marker increases in response to DNA damage more dramatically when the locus is present on small, plasmid-borne, homologous fragments than if it is carried on high molecular weight chromosomal fragments. We also study the kinetics of transformation for the different donor DNAs. Different kinetics are observed for homologous transformation depending on whether the homologous locus is carried on a plasmid or on chromosomal fragments. Chromosomal DNA- and non-homologous-plasmid-DNA-mediated transformation is complete (maximal) within several minutes, while transformation with a plasmid containing homologous DNA is still occurring after an hour. The results indicate that DNA damage directly increases rates of homologous recombination and transformation in B. subtilis. The relevance of these results and recent results of other labs to the evolution of transformation are discussed.  相似文献   

12.
Plasmid vectors capable for propagation of Bacillus subtilis DNA fragments containing riboflavin genes were constructed. Cloning of rib operon using pUB110 derivatives was performed in recE4 strain by using sequentional rescue of plasmids containing subfragments of the operon. Also, rib operon was cloned on the vectors containing DNA repeats. It was shown that the presence of direct and inverted repeats within plasmids allows to transform B. subtilis cells by monomers of plasmid DNA. Vectors that contained repeated sequences of DNA and ensured efficient cloning of genetic material in B. subtilis recipient cells were constructed. The use of streptococcal plasmid pSM19035 allowed to obtain vectors which were suitable for cloning large DNA fragments (6 MD and even more) in B. subtilis. A model of B. subtilis transformation by various types of plasmid DNA is presented. The model is in agreement with the general conception of chromosomal DNA transformation.  相似文献   

13.
Three Acinetobacter calcoaceticus transformation-deficient mutants, obtained by insertional mutagenesis with the nptll gene, have been characterized physiologically. One mutant (AAC211) was found to be completely transformation deficient, while two others, AAC213 and AAC214, were severely impaired in transformation efficiency (100-1000 times lower than the wild type). The latter applied to both chromosomal as well as plasmid DNA. Analysis of the chromosomal DNA fragments flanking the nptll gene in the mutants showed that mutants AAC213 and AAC214 had an insertion of the nptll gene in the same chromosomal region, but that they were the result of two independent mutational events, whereas the insertion in mutant AAC211 was at a different position. None of the three mutants showed phenotypic or genotypic characteristics typical of a RecA-deficient strain.  相似文献   

14.
利用DREAM设计和同源重组进行一步定点突变   总被引:3,自引:1,他引:2  
目的:建立基于DREAM设计和同源重组的简便、快速定点突变方法。方法:设计两条包含突变的反向PCR(inverse PCR)引物,使其5'端互补从而产生同源重组,同时使用DREAM设计方案在上述引物中引入限制性内切酶位点以便突变子筛选。用能扩增长片段的高保真耐热 DNA聚合酶扩增全长的质粒DNA,直接转化大肠杆菌。转化到细菌中的全长质粒DNA PCR产物可利用其末端同源序列发生同源重组而环化。利用引入的酶切位点方便地进行突变子的筛选。结果:我们用该方法成功地对长度大于7 kb的质粒进行了定点突变。结论:本定点突变无需任何突变试剂盒和特殊的试剂,只需一步反应即可完成;利用DREAM设计使克隆筛选简便可靠,高保真耐热DNA聚合酶可保证多数突变子克隆不发生意外突变,而该酶扩增长片段的能力使该方法适合于大多数质粒不经亚克隆直接突变。  相似文献   

15.
Genetic modifications of bacterial chromosomes are important for both fundamental and applied research. In this study, we developed an efficient, easy-to-use system for genetic modification of the Escherichia coli chromosome, a two-plasmid method involving lambda Red (λ-Red) recombination and I-SceI cleavage. An intermediate strain is generated by integration of a resistance marker gene(s) and I-SceI recognition sites in or near the target gene locus, using λ-Red PCR targeting. The intermediate strain is transformed with a donor plasmid carrying the target gene fragment with the desired modification flanked by I-SceI recognition sites, together with a bifunctional helper plasmid for λ-Red recombination and I-SceI endonuclease. I-SceI cleavage of the chromosome and the donor plasmid allows λ-Red recombination between chromosomal breaks and linear double-stranded DNA from the donor plasmid. Genetic modifications are introduced into the chromosome, and the placement of the I-SceI sites determines the nature of the recombination and the modification. This method was successfully used for cadA knockout, gdhA knock-in, seamless deletion of pepD, site-directed mutagenesis of the essential metK gene, and replacement of metK with the Rickettsia S-adenosylmethionine transporter gene. This effective method can be used with both essential and nonessential gene modifications and will benefit basic and applied genetic research.  相似文献   

16.
Two novel conditional broad-host-range cell lysis systems have been developed for the study of natural transformation in bacteria and the environmental fate of DNA released by cell death. Plasmid pDKL02 consists of lysis genes S, R, and Rz from bacteriophage lambda under the control of the Ptac promoter. The addition of inducer to Escherichia coli, Acinetobacter calcoaceticus, or Pseudomonas stutzeri containing plasmid pDKL02 resulted in cell lysis coincident with the release of high amounts of nucleic acids into the surrounding medium. The utility of this lysis system for the study of natural transformation with DNA released from lysed cells was assessed with differentially marked but otherwise isogenic donor-recipient pairs of P. stutzeri JM300 and A. calcoaceticus BD4. Transformation frequencies obtained with lysis-released DNA and DNA purified by conventional methods and assessed by the use of antibiotic resistance (P. stutzeri) or amino acid prototrophy (A. calcoaceticus) for markers were comparable. A second cell lysis plasmid, pDKL01, contains the lysis gene E from bacteriophage phi X174 and causes lysis of E. coli and P. stutzeri bacteria by activating cellular autolysins. Whereas DNA released from pDKL02-containing bacteria persists in the culture broth for days, that from induced pDKL01-containing bacteria is degraded immediately after release. The lysis system involving pDKL02 is thus useful for the study of both the fate of DNA released naturally into the environment by dead cells and gene transfer by natural transformation in the environment in that biochemically unmanipulated DNA containing defined sequences and coding for selective phenotypes can be released into a selected environment at a specific time point. This will allow kinetic measurements that will answer some of the current ecological questions about the fate and biological potential of environmental DNA to be made.  相似文献   

17.
The QuikChangeTM site-directed mutagenesis method is popular but imperfect. An improvement by using partially overlapping primers has been reported several times; however, it is incompatible with the proposed mechanism. The QuikChangeTM method using complementary primers is proposed to linearly amplify a target plasmid with the products annealing to produce double-stranded DNA molecules with 5′-overhangs. The overhang annealing is supposed to form circular plasmids with staggered breaks, which can be repaired in Escherichia coli after transformation. Here, we demonstrated that the PCR enzyme fills the 5′-overhangs in the early cycles, and the product is then used as the template for exponential amplification. The linear DNA molecules with homologous ends are joined to generate the plasmid with the desired mutations through homologous recombination in E. coli. The correct understanding is important to method improvements, guiding us to use partially overlapping primers and Phusion DNA polymerase for site-directed mutagenesis. Phusion did not amplify a plasmid with complementary primers but used partially overlapping primers to amplify the plasmid, producing linear DNA molecules with homologous ends for site-directed mutagenesis.  相似文献   

18.
A plasmid containing inverted repeats is constructed in Bacillus subtilis. Insertion of DNA fragments into the plasmid inverted repeats results either in the precise excision of the insert or in its duplication in the opposite inverted repeat. These rearrangements are due to the presence of inverted repeats only. Two recombination events are possibly responsible for these phenomena. During the first step of the recombination two plasmid monomers form a dimer molecule. During the second step the intramolecular recombination between the direct repeats in the dimer structure leads to the formation of two rearranged plasmid monomers devoid of insertion or containing two DNA inserts. Proposed dimeric intermediate is unstable in B. subtilis. However, it is isolated from Escherichia coli recA, cells. Plasmids containing the inverted repeats can serve as a model to study plasmid recombination in B. subtilis cells.  相似文献   

19.
In Bacillus subtilis, DNA repair and recombination are intimately associated with competence, the physiological state in which the bacterium can bind, take up and recombine exogenous DNA. Previously, we have shown that the homologous DNA transformation rate (ratio of transformants to total cells) increases with increasing UV dosage if cells are transformed after exposure to UV radiation (UV-DNA), whereas the transformation rate decreases if cells are transformed before exposure to UV (DNA-UV). In this report, by using different DNA repair-deficient mutants, we show that the greater increase in transformation rate in UV-DNA experiments than in DNA-UV experiments does not depend upon excision repair or inducible SOS-like repair, although certain quantitative aspects of the response do depend upon these repair systems. We also show that there is no increase in the transformation rate in a UV-DNA experiment when repair and recombination proficient cells are transformed with nonhomologous plasmid DNA, although the results in a DNA-UV experiment are essentially unchanged by using plasmid DNA. We have used din operon fusions as a sensitive means of assaying for the expression of genes under the control of the SOS-like regulon in both competent and noncompetent cell subpopulations as a consequence of competence development and our subsequent experimental treatments. Results indicate that the SOS-like system is induced in both competent and noncompetent subpopulations in our treatments and so should not be a major factor in the differential response in transformation rate observed in UV-DNA and DNA-UV treatments. These results provide further support to the hypothesis that the evolutionary function of competence is to bring DNA into the cell for use as template in the repair of DNA damage.  相似文献   

20.
M Fujii  K Sakaguchi 《Gene》1980,12(1-2):95-102
A composite plasmid pLS253 was constructed from pLS103 [carrying the Bacillus subtilis leucine genes on B. subtilis (natto) plasmid pLS28] and pHV14 [a recombinant plasmid composed of pBR322 and the staphylococcal R-plasmid pC194] employing BamHI endonuclease, T4 DNA ligase, and B. subtilis transformation. All the Leu+ Cmr transformants tested harbored not only pLS253 but also two smaller plasmids designated as pLS251 and pLS252. pLS253 DNA, when purified on an agarose gel, retained both Leu+ and Cmr transforming activities; however, in all the Leu+ Cmr transformants, the two smaller plasmids reappeared. pLS251 and pLS252 exhibited Leu+- or Cm4-transforming activity, respectively, and must have been derived from the pLS253 parent by an intramolecular recombination event, since the sum of the pLS251 and pLS252 DNAs represent the entire pLS253 genome. The recombination occurred between specific sites on the B. subtilis (natto) and Staphylococcus aureus plasmids. When the composite plasmid, pLS254, was constructed by BamHI cleavage of pLS251 and pLS252 followed by ligation, Leu+ Cmr transformants segregated two smaller plasmids which were indistinguishable from the original plasmids pLS103 and pHV14, respectively. They must have been derived from pLS254 through a reversal of the original recombination event. No intermolecular recombination between pLS251 and pLS252 DNA was detected. The recombination process was independent of recE function of the host cells, and its mechanism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号