首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
T Antony  T Thomas  A Shirahata  T J Thomas 《Biochemistry》1999,38(33):10775-10784
RNA-DNA hybrid stabilization is an important factor in the efficacy of oligonucleotide-based antisense gene therapy. We studied the ability of natural polyamines, putrescine, spermidine, and spermine, and a series of their structural analogues to stabilize RNA-DNA hybrids using melting temperature (Tm) measurements, circular dichroism (CD) spectroscopy, and the ethidium bromide (EB) displacement assay. Phosphodiester (PO) and phosphorothioate (PS) oligodeoxyribonucleotides (ODNs) (21-mer) targeted to the initiation codon region of c-myc mRNA and the corresponding complementary RNA oligomer were used for this study. In the absence of polyamines, the Tm values of RNA-PODNA and RNA-PSDNA helices were 41 +/- 1 and 35 +/- 1 degrees C, respectively, in 10 mM sodium cacodylate buffer. In the presence of a hexamine analogue of spermine at a concentration of 25 microM, the hybrids were stabilized with Tm values of 80 and 78 degrees C, for RNA-PODNA and RNA-PSDNA, respectively. The d(Tm)/d(log[polyamine]) values, representing the concentration-dependent stabilization of hybrid helices by polyamines, increased from 10 to 24 for both the RNA-PODNA and RNA-PSDNA helices. Bisethyl substitution of the primary amino groups of the polyamines reduced the hybrid stabilizing potential of the polyamines. Among the homologues of spermidine [H2N(CH2)3NH(CH2)nNH2, where n = 2-8; n = 4 for spermidine] and spermine [H)N(CH2)3NH(CH2)nNH(CH2)3NH2, where n = 2-8; n = 4 for spermine], spermidine and spermine were the most effective agents for stabilizing the hybrid helices. At a physiologically compatible concentration of 150 mM NaCl, the hybrid helix formed from PODNA was more stable than that formed from PSDNA in the presence of polyamines. CD spectroscopic studies showed that the hybrids were stabilized in a conformation close to A-DNA in the presence of polyamines. The relative binding affinity of the polyamine homologues for the hybrid helices, as measured by the EB displacement assay, followed the same order in which they stabilized the hybrids. These results are important in the antisense context and in the general context of polyamine-nucleic acid interactions, and suggest that pentamine and hexamine analogues of spermine might be useful in improving the efficacy of therapeutic ODNs.  相似文献   

3.
We used a molecular beacon (MB) containing a 15-mer triplex-forming oligonucleotide (TFO) to probe in real-time the kinetics of triplex DNA formation in the left side of the TCl tract (502-516) of the c-src proto-oncogene in vitro. The metal ions Na+, K+, and Mg2+ stabilized triplex DNA at this site. The pseudo-first-order rate constant (kpsi) and the second-order association rate constant (k1) for the binding of the MB to the target duplex in 10 mM sodium phosphate buffer, pH 7.3, increased from 3.2 +/- 0.9 to 15 +/- 2.8 x 10(-3) s(-1) and 6.4 +/- 1.8 to 30 +/- 5.6 x 102 M(-1) s(-1), respectively, on increasing the MgCl2 concentration from 1 to 2.5 mM. Similar values were obtained for the triplex DNA stabilized by NaCl (100-250 mM). Surprisingly, the values were around 2 times higher in the presence of KCl. The AG of triplex formation in the presence of 1 mM MgCl2, 150 mM NaCl, and 150 mM KCl were -7.8 +/- 0.3, -8.2 +/- 0.3 and -8.7 +/- 0.7 kcal/mol respectively, despite significant differences in the values of deltaH and deltaS, suggesting enthalpy-entropy compensation in the stabilization of the triplex DNA by these metal ions. These results show the utility of MBs ih probing triplex DNA formation and in evaluating kinetic and thermodynamic parameters important for the design and development of TFOs as triplex DNA-based therapeutic agents.  相似文献   

4.
The effects of counter ion on a nucleic acid duplex stability were investigated. Since a linear free energy relationship for the thermostability of oligonucleotide duplexes between those in 1 M and in 100 mM NaCl-phosphate buffer were observed regardless of whether they are DNA-DNA, RNA-RNA or RNA-DNA duplexes, simple prediction systems for [Delta] G degrees 37as well as T mvalues in 100 mM NaCl-phosphate buffer were established. These predictions were successful with an average error of only 2.4 degrees C for T mand 5. 7% for G degrees 37values. The number of Na+newly bound to a duplex when the duplex forms (-[Delta] n) was significantly influenced by the base composition, and -[Delta] n for d(GCCAGTTAA)/d(TTAACTGGC) was different for MgCl2, CaCl2, BaCl2and MnCl2(from 0.70 to 0.76 with the same order of the duplex stability). Almost no additive effects on the duplex stability was observed for NaCl and MgCl2, suggesting a competitive binding for these cations. The sequence-dependent manner of [Delta] n suggests the presence of preferential base pairs or nearest-neighbor base pairs for the cation binding, which would affect nearest-neighbor parameters.  相似文献   

5.
The hetero duplex molecule, r(CGCA)d(AAAAAGCG):d(CGCTTTTTTGCG) which corresponds to Okazaki fragment was synthesized and its molecular structure has been analyzed by NMR study. The RNA strand of RNA-DNA hybrid region adopts A-form and DNA strand of the same region deviates from the standard B-form. The conformation of DNA-DNA duplex segment belongs to B-form. The hybrid-DNA duplex junction shows a structural discontinuities, A-B junction. The same conformational characteristic of oligo(dA): oligo(dT) tract as that of DNA oligomer which has same base sequence has been observed.  相似文献   

6.
7.
Reannealed hybrid molecules of wild-type bacteriophage lambda DNA were prepared in aqueous solutions of formamide at a variety of NaCl concentrations at both room temperature ( 22 degrees C) and 37 degrees C. Treatment of the hybrid DNA molecules with the single-strand-specific nuclease S1 from Aspergillus oryzae followed by alkaline sucrose gradient sedimentation was used to monitor the extent and fidelity of hybridization. The optimal renaturation conditions at room temperature were found to be: 50% formamide, 35-55 mM NaCl and 10 mM Tris-HCl (pH 8.5) at 20-25 mug DNA/ml. Optimal conditions at 37 degrees C were: 32% formamide, 35-55 mM NaCl and 10 mM Tris-HCl (pH 8.5) at 20-25 mug DNA/ml. Under these conditions approximately 85-90% of the input single-stranded DNA (molecular weight 1.5 X 10(7)) was rendered S1-nuclease-resistant within 8 h at room temperature and 5 h at 37 degrees C. Neither Mg2+ nor spermidine appeared to have an effect on either the extent or fidelity of duplex formation. Experiments performed with excess enzyme and with lambda/lambda imm 434 heteroduplex hybrids suggested that the hybrid that the hybrid DNA molecules formed under optimal conditions contained no, or only short (less than 1%), mismatched regions.  相似文献   

8.
The fraction of the chloroplast DNA transcribed in the single celled alga Euglena has been determined by RNA-DNA hybridization. A vast excess of total cell RNA from cells which were rapidly dividing in the light was hybridized in liquid to [125I] — chloroplast DNA, and the resulting duplexes separated on hydroxyapatite columns. The contribution of DNA-DNA duplex formation was determined separately and was used to calculate that portion of the duplex which was actually a RNA-DNA hybrid. Sixteen percent of the single stranded chloroplast DNA forms a duplex with this RNA suggesting that 32 percent of the double stranded DNA molecule is being transcribed into RNA under these conditions of cell growth.  相似文献   

9.
10.
We present here a systematic study of ionic strength and divalent cation effects on Vinca alkaloid-induced tubulin spiral formation. We used sedimentation velocity experiments and quantitative fitting of weight-average sedimentation coefficients versus free drug concentrations to obtain thermodynamic parameters under various solution conditions. The addition of 50-150 mM NaCl to our standard buffer (10 mM piperazine-N,N'-bis(2-ethanesulfonic acid), 1 mM Mg, 50 microM GDP or GTP, pH 6.9) enhances overall vinblastine- or vincristine-induced tubulin self-association. As demonstrated in previous studies, GDP enhances overall self-association more than GTP, although in the presence of salt, GDP enhancement is reduced. For example, in 150 mM NaCl, GDP enhancement is 0.24 kcal/mol for vinblastine and 0.36 kcal/mol for vincristine versus an average enhancement of 0.87 (+/- 0.34) kcal/mol for the same drugs in the absence of salt. Wyman linkage analysis of experiments with vinblastine or vincristine over a range of NaCl concentrations showed a twofold increase in the change in NaCl bound to drug-induced spirals in the presence of GTP compared to GDP. These data indicate that GDP enhancement of Vinca alkaloid-induced tubulin self-association is due in part to electrostatic inhibition in the GTP state. In the absence of NaCl, we found that vinblastine and 1 mM Mn2+ or Ca2+ causes immediate condensation of tubulin. The predominant aggregates observed by electron microscopy are large sheets. This effect was not found with 1 mM Mg2+. At 100 microM cation concentrations (Mn2+, Mg2+, or Ca2+), GDP enhances vinblastine-induced spiral formation by 0.55 (+/- 0.26) kcal/mol. This effect is found only in K2, the association of liganded heterodimers at the ends of growing spirals. There is no GDP enhancement of K1, the binding of drug to heterodimer, although K1 is dependent upon the divalent cation concentration. NaCl diminishes tubulin condensation, probably by inhibiting lateral association, and allows an investigation of higher divalent cation concentrations. In the presence of 150 mM NaCl plus 1 mM divalent cations (Mn2+, Mg2+, or Ca2+) GDP enhances vinblastine-induced spiral formation by 0.35 (+/- 0.21) kcal/mol. Relaxation times determined by stopped-flow light scattering experiments in the presence of 150 mM NaCl and vincristine are severalfold longer than those in the presence of vinblastine, consistent with a mechanism involving the redistribution of longer polymers. Unlike previous results in the absence of NaCl, relaxation times in the presence of NaCl are only weekly protein concentration dependent, suggesting the absence of annealing or an additional rate-limiting step in the mechanism.  相似文献   

11.
We synthesized seven homologs of spermine (H2N(CH2)3NH(CH2)nNH(CH2)3NH2, where n = 2-9; n = 4 for spermine) and studied their effects on melting temperature (Tm), conformation, and precipitation of poly(dA).2poly(dT). The triplex DNA melting temperature, Tm1 was 34.4 degrees C in the presence of 150 mM KCl. Addition of spermine homologs increased Tm1 in a concentration-dependent and structure-dependent manner, with 3-6-3 (n = 6) exerting optimal stabilization. The dTm1/dlog[polyamine] values were 9-24 for these compounds. The duplex melting temperature, Tm2 was insensitive to homolog concentration and structure, suggesting their ability to stabilize triplex DNA without altering the stability of the underlying duplex. Circular dichroism spectral studies revealed psi-DNA formation in a concentration-dependent and structure-dependent manner. Phase diagrams were constructed showing the critical ionic/polyamine concentrations stabilizing different structures. These compounds also exerted structural specificity effects on precipitating triplex DNA. These data provide new insights into the ionic/structural determinants affecting triplex DNA stability and indicate that 3-6-3 is an excellent ligand to stabilize poly(dA).2poly(dT) triplex DNA under physiologic ionic conditions for antigene therapeutics.  相似文献   

12.
The binding of the ligands Mn2+, Ca2+, and methyl alpha-D-glucopyranoside to concanavalin A, purified as described (A.J. Sophianopoulos and J.A. Sophianopoulos (1981) Prep. Biochem. 11, 413-435), was studied by ultrafiltration in 0.2 M NaCl, pH 5.2 and pH 6.5 to 7, and at 23 to 25 degrees C. The association constant (Ka) of methyl alpha-D-glucopyranoside to concanavalin A was (2 +/- 0.2) X 10(3) M-1, both at pH 5.2 and 7. At pH 5.2 and in the absence of Ca2+, the Ka of Mn2+ to concanavalin A was (5 +/- 1) X 10(3) M-1, and in the presence of 1 mM Ca2+, the Ka was (9.1 +/- 2.1) X 10(5) M-1. At pH 6.5 Mn2+ bound to concanavalin A with a Ka of (7.3 +/- 1.8) X 10(5) M-1, and the binding affinity was virtually independent of the presence of Ca2+. Experiments of binding of 4-methylumbelliferyl alpha-D-mannopyranoside to concanavalin A indicated that at pH 5.2, binding of a single Mn2+ per concanavalin A monomer was sufficient to induce a fully active saccharide binding site. Ca2+ is not necessary for such activation, but rather it increases the affinity of concanavalin A for binding Mn2+.  相似文献   

13.
The synthesis of neomycin covalently attached at the C5-position of 2'-deoxyuridine is reported. The synthesis outlined allows for incorporation of an aminoglycoside (neomycin) at any given site in an oligonucleotide (ODN) where a thymidine (or uridine) is present. Incorporation of this modified base into an oligonucleotide, which is complementary to a seven-bases-long alpha-sarcin loop RNA sequence, leads to enhanced duplex hybridization. The increase in Tm for this duplex (DeltaTm = 6 degrees C) suggests a favorable interaction of neomycin within the duplex groove. CD spectroscopy shows that the modified duplex adopts an A-type confirmation. ITC measurements indicate the additive effects of ODN and neomycin binding to the RNA target (Ka = 4.5 x 107 M-1). The enhanced stability of the hybrid duplex from this neomycin-ODN conjugate originates primarily from the enthalpic contribution of neomycin {DeltaDeltaHobs = -7.21 kcal/mol (DeltaHneomycin conjugated - DeltaH nonconjugated)} binding to the hybrid duplex. The short linker length allows for selective stabilization of the hybrid duplex over the hybrid triplex. The results described here open up new avenues in the design and synthesis of nucleo-aminoglycoside-conjugates (N-Ag-C) where the inclusion of any number of aminoglycoside (neomycin) molecules per oligonucleotide can be accomplished.  相似文献   

14.
In order to investigate the energy and structural character of RNA-RNA triplets and RNA-DNA duplex base triplets, 64 sets of three-dimensional models of RNA-DNA duplex base triplets and mRNA-tRNA triplex base triplets were constructed and optimized by homologous modeling method using the software InsightII. The comparative statistical method and cluster analysis were adopted to study these features. The result showed: (i) all energy parameters of monomer RNA-DNA hybrid triplets and ternary complexes appeared significantly different; and some parameters related with overall molecules such as overall energy, bond energy and coulomb energy have statistically significant correlations between the structures in vacuum and aquatic solutions while other parameters, including theta energy, phi energy, hydrogen bond energy and non-bond energy, changed significantly, but not continuously. (ii) However, the case of mRNA-tRNA triplets was much more complicated in that only the bond energy's correlation coefficient is -0.8. Typically, the main contribution of GC pairs and G/A/U bases were interesting. The models of RNA-DNA hybrid triplets and mRNA-tRNA triplet should be helpful for the study of base pairing in codons and the biological effectiveness of antisense nucleic acids.  相似文献   

15.
The thermodynamics of self-assembly of a 14 base pair DNA double helix from complementary strands have been investigated by titration (ITC) and differential scanning (DSC) calorimetry, in conjunction with van't Hoff analysis of UV thermal scans of individual strands. These studies demonstrate that thermodynamic characterization of the temperature-dependent contributions of coupled conformational equilibria in the individual "denatured" strands and in the duplex is essential to understand the origins of duplex stability and to derive stability prediction schemes of general applicability. ITC studies of strand association at 293 K and 120 mM Na+ yield an enthalpy change of -73 +/- 2 kcal (mol of duplex)-1. ITC studies between 282 and 312 K at 20, 50, and 120 mM Na+ show that the enthalpy of duplex formation is only weakly salt concentration-dependent but is very strongly temperature-dependent, decreasing approximately linearly with increasing temperature with a heat capacity change (282-312 K) of -1.3 +/- 0.1 kcal K-1 (mol of duplex)-1. From DSC denaturation studies in 120 mM Na+, we obtain an enthalpy of duplex formation of -120 +/- 5 kcal (mol of duplex)-1 and an estimate of the corresponding heat capacity change of -0.8 +/- 0.4 kcal K-1 (mol of duplex)-1 at the Tm of 339 K. van't Hoff analysis of UV thermal scans on the individual strands indicates that single helix formation is noncooperative with a temperature-independent enthalpy change of -5.5 +/- 0.5 kcal at 120 mM Na+. From these observed enthalpy and heat capacity changes, we obtain the corresponding thermodynamic quantities for two fundamental processes: (i) formation of single helices from disordered strands, involving only intrastrand (vertical) interactions between neighboring bases; and (ii) formation of double helices by association (docking) of single helical strands, involving interstrand (horizontal and vertical) interactions. At 293 K and 120 mM Na+, we calculate that the enthalpy change for association of single helical strands is approximately -64 kcal (mol of duplex)-1 as compared to -210 kcal (mol of duplex)-1 calculated for duplex formation from completely unstructured single strands and to the experimental ITC value of -73 kcal (mol of duplex)-1. The intrinsic heat capacity change for association of single helical strands to form the duplex is found to be small and positive [ approximately 0.1 kcal K-1 (mol of duplex)-1], in agreement with the result of a surface area analysis, which also predicts an undetectably small heat capacity change for single helix formation.  相似文献   

16.
Proton nuclear magnetic resonance has been used to examine the effect of both noncomplementary and G.U oppositions in the duplexes formed by the synthetic pentaribonucleotides CpApApUpG, CpApUpUpG, CpApGpUpG, and CpApCpUpG. The lack of any sigmoidal behavior in the chemical shift vs. temperature plots of the base protons in the individual pentaribonucleotides indicates that duplexes with noncomplementary base oppositions of the type: formula: (see text), (where X = A, U, G, or C) do not form. Variable temperature spectra of the mixture of CpApGpUpG and CpApUpUpG were recorded over the range of 70--10 degrees C. The chemical shift vs. temperature plot of the purine aromatic protons displayed sigmoidal curves. This demonstrated both duplex formation and the presence of a G.U. base pair. The average Tm of the duplex was found to be 23.4 +/- 2.0 degrees C. This is similar to that of the duplex formed by CpApUpG (24.0 +/- 1.0 degrees C) but less than the Tm of the following duplexes: CpApApUpG:CpApUpUpG (Tm = 28.5 +/- 2.1 degrees C), CpApGpUpG:CpApCpUpG (Tm = 38.4 +/- 0.6 degrees C) and CpApUpApUpG (Tm = 41.5 +/- 1.1 degrees C). The G.U base pair has a Tm (20.0 degrees C) significantly lower than the rest of the duplex (24 +/- 1 degree C) and is a region of local instability within the double helix. This 1H NMR study is the first to investigate both the formation and relative stability of an internal G.U. base pair neighboring regular Watson--Crick base pairs.  相似文献   

17.
18.
Na+ has been implicated as a requirement for the inhibition of adenylate cyclase by hormones and neurotransmitters. This study examines effects of salt concentration on neuroblastoma plasma membranes that occur in the absence of an inhibitory hormone. The adenylate cyclase response to stimulatory agonists (GTP plus PGE1 (3), PGI2 or PGE2) was influenced by NaCl. As the [NaCl] increased to 150 mM, an increase in maximal activity and a decrease in apparent affinity was observed. At concentrations above 150 mM, NaCl decreased prostaglandin affinity and progressively decreased maximal activation. The GTP requirement was not altered by 30 or 150 mM NaCl in the presence of PGE1 or PGI2. The rate of Gpp(NH)p stimulated activity increased as the [NaCl] was increased in the assay. This increased rate was conserved when membranes activated in the presence of Gpp(NH)p and NaCl were reassayed in the absence of guanine nucleotide or salt. The salt evoked rate increase was proportionally greater at submaximal MgCl2 concentrations. The concentration requirement for Mg2+ was reduced by salt for adenylate cyclase in the presence of GTP or Gpp(NH)p. However, the enzyme stimulated by hormone exhibited a Mg2+ requirement that was low in the absence of salt and could not be further reduced by increased [NaCl]. Alternative monovalent cations (150 mM Li+, K+, Cs+, but not choline or tetramethylammonium) and anions (SO4=) substituted for NaCl. The observed effects were reversible upon washing the membranes and neither ouabain nor tetrodotoxin altered the response. These effects may result from a conformational alteration of a protein particularly sensitive to neutral salts in the assay.  相似文献   

19.
M K Ghosh  K Ghosh  O Dahl    J S Cohen 《Nucleic acids research》1993,21(24):5761-5766
An all phosphorodithioate oligodeoxyribonucleotide (PS2; 17-mer) complementary to the coding region of the rabbit beta-globin mRNA was compared with the normal (PO2) and phosphorothioate (POS) oligonucleotide of the same size and sequence with respect to physicochemical properties and antisense activity in cell-free systems. The melting temperature (Tm) of the PS2-cDNA duplex was reduced by 17 degrees C relative to the PO2-cDNA duplex, compared to 11 degrees C for the POS-cDNA duplex, suggesting a decreased stability of the duplex with an increasing sulfur substitution. Like the POS-derivative, the PS2 oligonucleotide is quite stable against exonucleases, but these modified oligonucleotides showed different stability towards endonucleases and also towards different sub-cellular fractions of MCF-7 cells. During in vitro protein binding studies, the PS2 oligonucleotide showed similar binding (10-20%) to that of the PO2 oligonucleotide, while the POS oligonucleotide bound 60%. In cell-free translation, the PS2 oligonucleotide produced slightly higher specific translation inhibition of rabbit beta-globin mRNA compared to that of the PO2 oligonucleotide, and this was true only at concentration below 2 mM. The POS-derivative, except at 10 mM concentration, always showed higher translation arrest of the rabbit beta-globin mRNA compared to that of the other two oligonucleotides. The present study suggests that the PS2 oligonucleotide offers very little advantage over the POS oligonucleotide for use as an antisense analog.  相似文献   

20.
S1 is an acidic protein associated with the 3′ end of 16S RNA; it is indispensable for ribosomal binding of natural mRNA. We find that S1 unfolds single stranded stacked or helical polynucleotides (poly rA, poly rC, poly rU). It prevents the formation of poly (rA + rU) and poly (rI + rC) duplexes at 10–25 mM NaCl but not at 50–100 mM NaCl. Partial, salt reversible denaturation is also seen with coliphage MS2 RNA, E. coli rRNA and tRNA. Generally, only duplex structures with a Tm greater than about 55° are formed in the presence of S1. The protein unfolds single stranded DNA but not poly d(A·T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号