首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenylalanyl-tRNA synthetase from the archaebacterium Methanosarcina barkeri activates a number of phenylalanine analogues (methionine, p-fluorophenylalanine, beta-phenylserine, beta-thien-2-ylalanine, 2-amino-4-methylhex-4-enoic acid and ochratoxin A) in the absence of tRNA, as demonstrated by Km and kcat of the ATP/PPi exchange reaction. Upon complexation with tRNA, AMP formation from the enzyme X tRNA complex in the presence of ATP, one of the above analogues or tyrosine, leucine, mimosine, N-benzyl-L- or N-benzyl-D-phenylalanine indicates activation of the analogues under conditions of aminoacylation. Natural noncognate amino acids are not transferred to tRNAPhe-C-C-A or tRNAPhe-C-C-A-(3'-NH2). This pretransfer proofreading mechanism, together with the comparatively low ratio of synthetic to successive hydrolytic steps, resembles the mechanism of liver enzymes of vertebrates. In contrast, eubacterial phenylalanyl-tRNA synthetases achieve the necessary fidelity by post-transfer proofreading, a corrective hydrolytic event after transfer to tRNAPhe. Diadenosine 5',5'-P1,P4-tetraphosphate synthesis is shown to be a common feature for phenylalanyl-tRNA synthetases from all three lineages of descent. The immunological approach demonstrates that aminoacyl-tRNA synthetases do not belong to the group of enzymes in gene expression with high structural conservation.  相似文献   

2.
Incorporation of unnatural amino acids with unique chemical functionalities has proven to be a valuable tool for expansion of the functional repertoire and properties of proteins as well as for structure-function analysis. Incorporation of alpha-hydroxy acids (primary amino group is substituted with hydroxyl) leads to the synthesis of proteins with peptide bonds being substituted by ester bonds. Practical application of this modification is limited by the necessity to prepare corresponding acylated tRNA by chemical synthesis. We investigated the possibility of enzymatic incorporation of alpha-hydroxy acid and acid analogues (lacking amino group) of amino acids into tRNA using aminoacyl-tRNA synthetases (aaRSs). We studied direct acylation of tRNAs by alpha-hydroxy acid and acid analogues of amino acids and corresponding chemically synthesized analogues of aminoacyl-adenylates. Using adenylate analogues we were able to enzymatically acylate tRNA with amino acid analogues which were otherwise completely inactive in direct aminoacylation reaction, thus bypassing the natural mechanisms ensuring the selectivity of tRNA aminoacylation. Our results are the first demonstration that the use of synthetic aminoacyl-adenylates as substrates in tRNA aminoacylation reaction may provide a way for incorporation of unnatural amino acids into tRNA, and consequently into proteins.  相似文献   

3.
Aminoacyl-tRNA synthetases establish the rules of the genetic code by catalyzing attachment of amino acids to specific transfer RNAs (tRNAs) that bear the anticodon triplets of the code. Each of the 20 amino acids has its own distinct aminoacyl-tRNA synthetase. Here we use energy-transfer-dependent fluorescence from the nucleotide probe N-methylanthraniloyl dATP (mdATP) to investigate the active site of a specific aminoacyl-tRNA synthetase. Interaction of the enzyme with the cognate amino acid and formation of the aminoacyl adenylate intermediate were detected. In addition to providing a convenient tool to characterize enzymatic parameters, the probe allowed investigation of the role of conserved residues within the active site. Specifically, a residue that is critical for binding could be distinguished from one that is important for the transition state of adenylate formation. Amino acid binding and adenylate synthesis by two other aminoacyl-tRNA synthetases was also investigated with mdATP. Thus, a key step in the synthesis of aminoacyl-tRNA can in general be dissected with this probe.  相似文献   

4.
Discrimination factors (D) which are characteristic for discrimination between lysine and 19 naturally occurring non-cognate amino acids have been determined from kcat and Km values for native and phosphorylated lysyl-tRNA synthetases from yeast. Generally, both species of this class II aminoacyl-tRNA synthetase are considerably less specific than the class I synthetases specific for isoleucine, valine, tyrosine, and arginine. D values of the native enzyme are in the range 90-1700, D values of the phosphorylated species in the range 40-770. The phosphorylated enzyme acts faster and less accurately. In aminoacylation of tRNALys-C-C-A(2'NH2) discrimination factors D1 vary over 30-980 for the native and over 8-300 for the phosphorylated enzyme. From AMP formation stoichiometry and D1 values pretransfer proof-reading factors (II1) of 1.1-56 were calculated for for the native enzyme, factors of 1.0-44 for the phosphorylated species. Post-transfer proof-reading factors (II2) were calculated from D values and AMP formation stoichiometry in acylation of tRNALys-C-C-A. Pretransfer proof-reading is the main correction step, posttransfer proof-reading is less effective or negligible (II2 approximately 1-8). Initial discrimination factors (I), which are due to differences in Gibbs free energies of binding between lysine and noncognate substrates (delta delta GI), were calculated from discrimination and proof-reading factors. In contrast to class I synthetases, for lysyl-tRNA synthetase only one initial discrimination step can be assumed and amino acid recognition is reduced to a three-step process instead of the four-step recognition observed for the class I synthetases. Plots of delta delta GI values against accessible surface areas of amino acids show clearly that phosphorylation of the enzyme changes the structures of the amino acid binding sites. This is illustrated by a hypothetical 'stopper model' of these sites.  相似文献   

5.
Nordin BE  Schimmel P 《Biochemistry》2003,42(44):12989-12997
The genetic code depends on amino acid fine structure discrimination by aminoacyl-tRNA synthetases. For isoleucyl- (IleRS) and valyl-tRNA synthetases (ValRS), reactions that hydrolyze misactivated noncognate amino acids help to achieve high accuracy in aminoacylation. Two editing pathways contribute to aminoacylation fidelity: pretransfer and post-transfer. In pretransfer editing, the misactivated amino acid is hydrolyzed as an aminoacyl adenylate, while in post-transfer editing a misacylated tRNA is deacylated. Both reactions are dependent on a tRNA cofactor and require translocation to a site located approximately 30 A from the site of amino acid activation. Using a series of 3'-end modified tRNAs that are deficient in either aminoacylation, deacylation, or both, total editing (the sum of pre- and post-transfer editing) was shown to require both aminoacylation and deacylation activities. These and additional results with IleRS are consistent with a post-transfer deacylation event initiating formation of an editing-active enzyme/tRNA complex. In this state, the primed complex processively edits misactivated valyl-adenylate via the pretransfer route. Thus, misacylated tRNA is an obligatory intermediate for editing by either pathway.  相似文献   

6.
The regulation of synthesis of valyl-, leucyl-, and isoleucyl-transfer ribonucleic acid (tRNA) synthetases was examined in strains of Escherichia coli and Salmonella typhimurium. When valine and isoleucine were limiting growth, the rate of formation of valyl-tRNA synthetase was derepressed about sixfold; addition of these amino acids caused repression of synthesis of this enzyme. The rate of synthesis of the isoleucyl- and leucyl-tRNA synthetases was derepressed only during growth restriction by the cognate amino acid. Restoration of the respective amino acid to these derepressed cultures caused repression of synthesis of the aminoacyl-tRNA synthetase, despite the resumption of the wild-type growth rate.  相似文献   

7.
Aminoacyl-tRNA synthetases play a central role in maintaining accuracy during the translation of the genetic code. To achieve this challenging task they have to discriminate against amino acids that are very closely related not only in structure but also in chemical nature. A 'double-sieve' editing model was proposed in the late seventies to explain how two closely related amino acids may be discriminated. However, a clear understanding of this mechanism required structural information on synthetases that are faced with such a problem of amino acid discrimination. The first structural basis for the editing model came recently from the crystal structure of isoleucyl-tRNA synthetase, a class I synthetase, which has to discriminate against valine. The structure showed the presence of two catalytic sites in the same enzyme, one for activation, a coarse sieve which binds both isoleucine and valine, and another for editing, a fine sieve which binds only valine and rejects isoleucine. Another structure of the enzyme in complex with tRNA showed that the tRNA is responsible for the translocation of the misactivated amino-acid substrate from the catalytic site to the editing site. These studies were mainly focused on class I synthetases and the situation was not clear about how class II enzymes discriminate against similar amino acids. The recent structural and enzymatic studies on threonyl-tRNA synthetase, a class II enzyme, reveal how this challenging task is achieved by using a unique zinc ion in the active site as well as by employing a separate domain for specific editing activity. These studies led us to propose a model which emphasizes the mirror symmetrical approach of the two classes of enzymes and highlights that tRNA is the key player in the evolution of these class of enzymes.  相似文献   

8.
Summary Aminoacyl tRNA synthetases discriminate between tRNA species by a highly specific mechanism. Physical and chemical studies indicate that the synthetases bind along and around the inside of the three-dimensional L-shaped tRNA structure. Studies of mutant tRNAs that affect synthetase interaction tend to confirm this conclusion. However, in contrast to proteins that recognize a specific block of contiguous nucleotide units (e.g., repressors, restriction enzymes, etc.), synthetases appear to interact with spatially disperse elements of the structure. Available evidence suggests that tRNA binding clefts on various synthetases may be roughly similar, with specificity being achieved by the choice of amino acid residues in a few critical positions in the tRNA binding clefts. With this idea in mind, it should be possible to introduce amino acid substitutions into the binding clefts and thereby change tRNA recognition specificity. This has been attempted (by genetic manipulations) and a mutant alanine tRNA synthetase with altered tRNA recognition has been isolated. This enzyme can attach alanine to isoleucine specific tRNA. When presented with valine specific tRNA, a tRNA similar in some structural features to the isoleucine specific tRNA, or with the structurally quite different tyrosine specific tRNA, no significant aminoacylation occurs. Thus, a precise specificity alteration can occur through mutation; this result supports the idea of similarities in synthetase binding clefts, with specificity being achieved by the positioning of amino acids at critical positions in these clefts. Finally, further data have been obtained on the issue of possible transient covalent bond formation between synthetases and tRNAs, as a critical part of the interaction.Abbreviations tRNAx a tRNA specific for the amino acid - x where x is given the standard 3 letter abbreviation  相似文献   

9.
We describe the nucleotide sequences of several overlapping cDNA clones specific for human glutaminyl-tRNA synthetase. The identified open reading frame indicates that the enzyme is composed of 1440 amino acids. A stretch of about 360 amino acids of the human enzyme is highly conserved in bacterial and yeast glutaminyl-tRNA synthetases. However, the human enzyme is three times larger than the bacterial and twice as large as the yeast enzyme suggesting that a considerable part of human glutaminyl-tRNA synthetase has evolved to perform functions other than the charging of tRNA. The sequence outside of the conserved core region includes three 57-amino acid repeats followed by a consecutive stretch of 11 charged amino acids. A computer assisted search of two protein data banks reveals that the human glutaminyl-tRNA synthetase shares small blocks of amino acid similarities with several other synthetases of different amino acid specificities. Interestingly, the enzyme also possesses some regions of similarities with eukaryotic translation elongation factor EF-1 but not with any other sequence stored in the protein data banks. The coding regions of human and mouse glutaminyl-tRNA synthetase cDNAs are identical at 94% of the codons. However, the 3'-noncoding regions of mouse and human mRNAs are more divergent (approximately 68%) but both possess the potential to form stable secondary structures of similar general architecture.  相似文献   

10.
Shockey JM  Fulda MS  Browse J 《Plant physiology》2003,132(2):1065-1076
Acyl-activating enzymes are a diverse group of proteins that catalyze the activation of many different carboxylic acids, primarily through the formation of a thioester bond. This group of enzymes is found in all living organisms and includes the acyl-coenzyme A synthetases, 4-coumarate:coenzyme A ligases, luciferases, and non-ribosomal peptide synthetases. The members of this superfamily share little overall sequence identity, but do contain a 12-amino acid motif common to all enzymes that activate their acid substrates using ATP via an enzyme-bound adenylate intermediate. Arabidopsis possesses an acyl-activating enzyme superfamily containing 63 different genes. In addition to the genes that had been characterized previously, 14 new cDNA clones were isolated as part of this work. The protein sequences were compared phylogenetically and grouped into seven distinct categories. At least four of these categories are plant specific. The tissue-specific expression profiles of some of the genes of unknown function were analyzed and shown to be complex, with a high degree of overlap. Most of the plant-specific genes represent uncharacterized aspects of carboxylic acid metabolism. One such group contains members whose enzymes activate short- and medium-chain fatty acids. Altogether, the results presented here describe the largest acyl-activating enzyme family present in any organism thus far studied at the genomic level and clearly indicate that carboxylic acid activation metabolism in plants is much more complex than previously thought.  相似文献   

11.
gamma-Glutamyltransferase has been purified from rat kidney by a novel procedure using phenyl boronate affinity chromatography. The highly purified enzyme has been studied with respect to acceptor specificity for a number of amino acids, amino acid analogues, dipeptides and tripeptides. The acceptor activity is specific for L-amino acids. The amino acids and the majority of the essential amino acids are poor acceptors while the sulphur-containing amino acids are the best acceptors. The acceptor activity is modulated by the substitution of the amino acid side chain. Substitution of the side chain at the delta, gamma or beta positions results in a proportionally decreasing ability to act as acceptor. The carbonyl moiety of the gamma-carboxy group of the acceptor appears to be essential for acceptor activity, absence of an alpha-carboxy carbonyl group increases the Kappm of the acceptor approximately 100-fold.  相似文献   

12.
Amino acids are actively transported across the plasma membrane of plant cells by proton-coupled symports. Previously, we identified four amino acid symports in isolated plasma membrane vesicles, including two porters for the neutral amino acids. Here we investigated the effect of amino acid analogues on neutral amino acid transport to identify structural features that are important in molecular recognition by Neutral System I (isoleucine) and Neutral System II (alanine and leucine). D-Isomers of alanine and isoleucine were not effective transport antagonists of the L-isomers. These data are characteristic of stereospecificity and suggest that the positional relationship between the alpha-amino and carboxyl groups is an important parameter in substrate recognition. This conclusion was supported by the observation that beta-alanine and analogues with methylation at the alpha-carbon, at the carboxyl group, or at the alpha-amino group were not effective transport inhibitors. Specific binding reactions were also implicated in these experiments because substitution of the alpha-amino group with a space filling methyl or hydroxyl group eliminated transport inhibition. In contrast, analogues with various substitutions at the distal end of the amino acid were potent antagonists. Moreover, the relative activity of several analogues was influenced by the location of sidechain branches and Neutral Systems I and II were resolved based on differential sensitivity to branching at the beta-carbon. The kinetics of azaserine and p-nitrophenylalanine inhibition of leucine transport were competitive. We conclude that the binding site for the carboxyl end of the amino acid is a well-defined space that is characterized by compact, asymmetric positional relationships and specific ligand interactions. Although the molecular interactions associated with the distal portion of the amino acid were less restrictive, this component of the enzyme-substrate complex is also important in substrate recognition because the neutral amino acid symports are able to discriminate between specific neutral amino acids and exclude the acidic and basic amino acids.  相似文献   

13.
R Rauhut  H J Gabius  F Cramer 《Biochemistry》1985,24(15):4052-4057
The phenylalanyl-tRNA synthetases from cytoplasm and chloroplasts of bean (Phaseolus vulgaris) leaves employ different strategies with respect to accuracy. The chloroplastic enzyme that is coded for by the nuclear genome follows the pathway of posttransfer proofreading, also characteristic for enzymes from eubacteria and cytoplasm and mitochondria of lower eukaryotic organisms. In contrast, the cytoplasmic enzyme uses pretransfer proofreading in the case of noncognate natural amino acids, characteristic for higher eukaryotic organisms and archaebacteria. Dependent on the nature of the noncognate amino acid, pretransfer proofreading in this case occurs without tRNA stimulation or with tRNA stimulated with no or little effect of the nonaccepting 3'-OH group of the terminal adenosine. The fundamental mechanistic difference in proofreading between the heterotopic intracellular isoenzymes of the plant cell supports the idea of the origin of the chloroplastic gene by gene transfer from a eubacterial endosymbiont to the nucleus. Origin by duplication of the nuclear gene, as indicated for mitochondrial phenylalanyl-tRNA synthetases [Gabius, H.-J., Engelhardt, R., Schroeder, F.R., & Cramer, F. (1983) Biochemistry 22, 5306-5315], appears unlikely. Further analyses of the ATP/PPi pyrophosphate exchange and aminoacylation of tRNAPhe-C-C-A(3'NH2), using 11 phenylalanine analogues, reveal intraspecies and interspecies variability of the architecture of the amino acid binding part within the active site.  相似文献   

14.
Medium chain acyl-CoA synthetases catalyze the first reaction of amino acid conjugation of many xenobiotic carboxylic acids and fatty acid metabolism. This paper reports studies on purification, characterization, and the partial amino acid sequence of mouse liver enzyme. The medium chain acyl-CoA synthetase was isolated from mouse liver mitochondria. The purified enzyme catalyzes this reaction not only for straight medium chain fatty acids but also for aromatic and arylacetic acids. Maximal activity was found with hexanoic acid. High activities were obtained with benzoic acid having methyl, pentyl, and methoxy groups in the para- or meta-positions of the benzene ring. However, the enzyme was less active with valproic acid and ketoprofen. Salicylic acid exhibited no activity. The medium chain acyl-CoA synthetases from mouse and bovine liver mitochondria were subjected to in-gel tryptic digestion, followed by LC-MS/MS sequence analysis. The amino acid sequence of each tryptic peptide of mouse liver mitochondrial medium chain acyl-CoA synthetase differed from that from bovine liver mitochondria only in one or two amino acids. LC-MS/MS analysis provided the information about these differences in amino acid sequences. In addition, we compared the properties of this protein with the homologues from rat and bovine.  相似文献   

15.
16.
The aminoacyl-tRNA synthetases exist as two enzyme families which were apparently generated by divergent evolution from two primordial synthetases. The two classes of enzymes exhibit intriguing familial relationships, in that they are distributed nonrandomly within the codon-amino acid matrix of the genetic code. For example, all XCX codons code for amino acids handled by class II synthetases, and all but one of the XUX codons code for amino acids handled by class I synthetases. One interpretation of these patterns is that the synthetases coevolved with the genetic code. The more likely explanation, however, is that the synthetases evolved in the context of an already-established genetic code—a code which developed earlier in an RNA world. The rules which governed the development of the genetic code, and led to certain patterns in the coding catalog between codons and amino acids, would also have governed the subsequent evolution of the synthetases in the context of a fixed code, leading to patterns in synthetase distribution such as those observed. These rules are (1) conservative evolution of amino acid and adapter binding sites and (2) minimization of the disruptive effects on protein structure caused by codon meaning changes.  相似文献   

17.
delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine (ACV) synthetase, the multienzyme catalyzing the formation of ACV from the constituent amino acids and ATP in the presence of Mg2+ and dithioerythritol, was purified about 2700-fold from Streptomyces clavuligerus. The molecular mass of the native enzyme as determined by gel filtration chromatography is 560 kDa, while that determined by denaturing gel electrophoresis is 500 kDa. The enzyme is able to catalyze pyrophosphate exchange in dependence on L-cysteine and L-valine, but no L-alpha-aminoadipic-acid-dependent ATP/PPi exchange could be detected. Other L-cysteine- and L-valine-activating enzymes present in crude extracts were identified as aminoacyl-tRNA synthetases which could be separated from ACV synthetase. The molecular mass of these enzymes is 140 kDa for L-valine ligase and 50 kDa for L-cysteine ligase. The dissociation constants have been estimated, assuming three independent activation sites, to be 1.25 mM and 1.5 mM for cysteine and ATP, and 2.4 mM and 0.25 mM for valine and ATP, respectively. The enzyme forms a thioester with alpha-aminoadipic acid and with valine in a molar ratio of 0.6:1 (amino acid/enzyme). Thus, the bacterial ACV synthetase is a multifunctional peptide synthetase, differing from fungal ACV synthetases in its mechanism of activation of the non-protein amino acid.  相似文献   

18.
The specificity of valyl-, phenylalanyl-, and tyrosyl-tRNA synthetases from yeast has been examined by a series of stringent tests designed to eliminate the possibility of artefactual interference. Valyl-tRNA synthetase, as well as activating a number of amino acid analogues, will accept alanine, cysteine, isoleucine, and serine in addition to threonine as substrates for both ATP-PPi exchange and transfer to some tRNAVal species. The transfer is not observed if atempts are made to isolate the appropriate aminoacyl-tRNAVal-C-C-A but its role in the overall aminoacylation can be suspected from both the formation of a stable aminoacyl-tRNAVal-C-C-A(3'NH2) compound and from the stoichiometry of ATP hydrolysis during the aminoacylation of the native tRNA. Similar tests with phenylalanyl-tRNA synthetase indicate that this enzyme will also activate and transfer other naturally occurring amino acids, namely, leucine, methionine, and tyrosine. The tyrosine enzyme, which lacks the hydrolytic capacity of the other two enzymes (von der Haar, F., & Cramer, F (1976) Biochemistry 15, 4131--4138) is probably absolutely specific for tyrosine. It is concluded that chemical proofreading, in terms of an enzymatic hydrolysis of a misacylated tRNA, plays an important part in maintaining the specificity in the overall reaction and that this activity may be more widespread than has so far been suspected.  相似文献   

19.
20.
Knowledge on the evolution of aminoacyl-tRNA synthetases is crucial to studies on the origins of life. The relationships between the different aminoacyl-tRNA synthetase specificities in prokaryotic organisms are studied in this work. We reconstructed the ancestor sequences and the phylogenetic relationships utilizing the Maximum Likelihood method. The results suggest that in class I the evolution of the N-terminal segment was strongly influenced by the amino acid hydropathy in both domains of prokaryotes. The results for the C-terminal segments of class I were different in the two domains, indicating that its evolution was strongly influenced by the specific types of tRNA modification in each domain. The class II groups in Archaea were more heterogeneous with respect to the hydropathy of amino acids, indicating the interference of other influences. In bacteria, the configuration was also complex but the overall consensual division in two groups was maintained, group IIa forming a single branch with the five hydroapathetic amino acid specificities and group IIb containing the specificities for the moderately hydrophobic together with the hydrophilic amino acids. It is indicated that the aminoacyl-tRNA synthetase in both domains were subjected to different selective forces in diverse parts of the proteins, resulting in complex phylogenetic patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号