首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recently, we have identified serum response factor (SRF) as a mediator of clinically relevant androgen receptor (AR) action in prostate cancer (PCa). Genes that rely on SRF for androgen responsiveness represent a small fraction of androgen-regulated genes, but distinguish benign from malignant prostate, correlate with aggressive disease, and are associated with biochemical recurrence. Thus, understanding the mechanism(s) by which SRF conveys androgen regulation to its target genes may provide novel opportunities to target clinically relevant androgen signaling. Here, we show that the small GTPase ras homolog family member A (RhoA) mediates androgen-responsiveness of more than half of SRF target genes. Interference with expression of RhoA, activity of the RhoA effector Rho-associated coiled-coil containing protein kinase 1 (ROCK), and actin polymerization necessary for nuclear translocation of the SRF cofactor megakaryocytic acute leukemia (MAL) prevented full androgen regulation of SRF target genes. Androgen treatment induced RhoA activation, increased the nuclear content of MAL, and led to MAL recruitment to the promoter of the SRF target gene FHL2. In clinical specimens RhoA expression was higher in PCa cells than benign prostate cells, and elevated RhoA expression levels were associated with aggressive disease features and decreased disease-free survival after radical prostatectomy. Overexpression of RhoA markedly increased the androgen-responsiveness of select SRF target genes, in a manner that depends on its GTPase activity. The use of isogenic cell lines and a xenograft model that mimics the transition from androgen-stimulated to castration-recurrent PCa indicated that RhoA levels are not altered during disease progression, suggesting that RhoA expression levels in the primary tumor determine disease aggressiveness. Androgen-responsiveness of SRF target genes in castration-recurrent PCa cells continued to rely on AR, RhoA, SRF, and MAL and the presence of intact SRF binding sites. Silencing of RhoA, use of Rho-associated coiled-coil containing protein kinase 1 inhibitors, or an inhibitor of SRF-MAL interaction attenuated (androgen-regulated) cell viability and blunted PCa cell migration. Taken together, these studies demonstrate that the RhoA signaling axis mediates clinically relevant AR action in PCa.  相似文献   

2.
Han YL  Yu HB  Yan CH  Meng ZM  Zhang XL  Kang J  Li SH  Wang SW 《生理学报》2005,57(3):295-302
为进一步阐明RhoA调控人脐静脉内皮细胞(human umbilical vein endothelial cell,HUVEC)肌动蛋白骨架重构的分子机制,用逆转录病毒感染并筛选出稳定表达持续活化型RhoA(Q63LRhoA)和主导抑制型RhoA(T19NRhoA)的HUVECs。应用免疫组化和Western blot方法分析去血清前后HUVECs血清反应因子(serum response factor,SRF)的表达及定位,Rhodamine-Phalloidine染色观察F-actin动态变化。结果显示,Q63LRhoA组细胞核中SRF表达增加,F-actin重排形成大量应力纤维;T19NRhoA组中SRF表达较弱,F-actin无明显改变,无应力纤维形成。去血清后,正常HUVECs(对照组)和感染细胞中SRF的表达均显著增加,但其亚细胞定位明显不同。对照组去血清培养3d,SRF主要定位在细胞核,去血清培养5d,SRF出核转位入细胞浆。Q63LRhoA组SRF发生核滞留,不随去血清培养时间延长发生出核转位现象。T19NRhoA组SRF的表达主要定位于细胞核周。对照组去血清培养3d,F-actin表达增加,同时形成大量应力纤维,去血清培养5d,细胞F-actin表达下调,应力纤维解聚。Q63LRhoA组F-actin重构持续发生并形成大量应力纤维,但不随去血清培养时间延长发生明显解聚。而T19NRhoA组F-actin表达不随去血清时间延长而增加。上述结果提示,RhoA介导HUVECs F-actin的重构与SRF的核转位现象密切相关。  相似文献   

3.
4.
5.
6.
7.
The small GTPase RhoA controls activity of serum response factor (SRF) by inducing changes in actin dynamics. We show that in PC12 cells, activation of SRF after serum stimulation is RhoA dependent, requiring both actin polymerization and the Rho kinase (ROCK)-LIM kinase (LIMK)-cofilin signaling pathway, previously shown to control F-actin turnover. Activation of SRF by overexpression of wild-type LIMK or ROCK-insensitive LIMK mutants also requires functional RhoA, indicating that a second RhoA-dependent signal is involved. This is provided by the RhoA effector mDia: dominant interfering mDia1 derivatives inhibit both serum- and LIMK-induced SRF activation and reduce the ability of LIMK to induce F-actin accumulation. These results demonstrate a role for LIMK in SRF activation, and functional cooperation between RhoA-controlled LIMK and mDia effector pathways.  相似文献   

8.
9.
10.
11.
12.
13.
14.
The long cytoplasmic tail of the human immunodeficiency virus (HIV)-1 transmembrane protein gp41 (gp41C) is implicated in the replication and cytopathicity of HIV-1 [1]. Little is known about the specific functions of gp41C, however. HIV-1 or simian immunodeficiency virus (SIV) mutants with defective gp41C have cell-type- or species-dependent phenotypes [2] [3] [4] [5] [6]. Thus, host factors are implicated in mediating the functions of gp41C. We report here that gp41C interacted with the carboxy-terminal regulatory domain of p115-RhoGEF [7], a specific guanine nucleotide exchange factor (GEF) and activator of the RhoA GTPase, which regulates actin stress fiber formation, activation of serum response factor (SRF) and cell proliferation [8] [9]. We demonstrate that gp41C inhibited p115-mediated actin stress fiber formation and activation of SRF. An amphipathic helix region with a leucine-zipper motif in gp41C is involved in its interaction with p115. Mutations in gp41C leading to loss of interaction with p115 impaired HIV-1 replication in human T cells. These findings suggest that an important function of gp41C is to modulate the activity of p115-RhoGEF and they thus reveal a new potential anti-HIV-1 target.  相似文献   

15.
16.
17.
18.
Sphingosylphosphorylcholine (SPC), a bioactive sphingolipid, has recently been reported to modulate actin cytoskeleton rearrangement. We have previously demonstrated Fyn tyrosine kinase is involved in SPC-induced actin stress fiber formation in fibroblasts. However, Fyn-dependent signaling pathway remains to be elucidated. The present study demonstrates that RhoA-ROCK signaling downstream of Fyn controls stress fiber formation in SPC-treated fibroblasts. Here, we found that SPC-induced stress fiber formation was inhibited by C3 transferase, dominant negative RhoA or ROCK. SPC activated RhoA, which was blocked by pharmacological inhibition of Fyn activity or dominant negative Fyn. Constitutively active Fyn (ca-Fyn) stimulated stress fiber formation and localized with F-actin at the both ends of stress fibers, both of which were prevented by Fyn translocation inhibitor eicosapentaenoic acid (EPA). In contrast, inhibition of ROCK abolished only the formation of stress fibers, without affecting the localization of ca-Fyn. These results allow the identification of the molecular events downstream SPC in stress fiber formation for a better understanding of stress fiber formation involving Fyn.  相似文献   

19.
p160ROCK mediates RhoA activation of Na-H exchange.   总被引:4,自引:0,他引:4       下载免费PDF全文
The ubiquitously expressed Na-H exchanger, NHE1, acts downstream of RhoA in a pathway regulating focal adhesion and actin stress fiber formation. p160ROCK, a serine/threonine protein kinase, is a direct RhoA target mediating RhoA-induced assembly of focal adhesions and stress fibers. Here, stress fiber formation induced by p160ROCK was inhibited by the addition of a specific NHE1 inhibitor, ethylisopropylamiloride, in CCL39 fibroblasts, and was absent in PS120 mutant fibroblasts lacking NHE1. In CCL39 cells, NHE1 activity was stimulated by expression of mutationally active p160ROCK, but not by mutationally active protein kinase N, another RhoA target kinase. Expression of a dominant interfering p160ROCK inhibited RhoA-, but not Cdc42- or Rac-activation of NEH1. In addition, the p160ROCK-specific inhibitor Y-27632 inhibited increases in NHE1 activity in response to RhoA, and to lysophosphatidic acid (LPA), which stimulates RhoA, and it also inhibited LPA-increased phosphorylation of NHE1. A C-terminal truncation of NHE1 abolished both LPA-induced phosphorylation and activation of the exchanger. Furthermore, mutationally active p160ROCK phosphorylated an NHE1 C-terminal fusion protein in vitro, and this was inhibited in the presence of Y-27632. Phosphopeptide maps indicated that identical residues in NHE1 were phosphorylated by p160ROCK in vivo and in vitro. These findings identify p160ROCK as an upstream, possibly direct, activator of NHE1, and suggest that NHE1 activity and phosphorylation are necessary for actin stress fiber assembly induced by p160ROCK.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号