首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synaptotagmins constitute a large protein family, characterized by one transmembrane region and two C2 domains, and can be classified into several subclasses based on phylogenetic relationships and biochemical activities (Fukuda, M., Kanno, E., and Mikoshiba, K. (1999) J. Biol. Chem. 274, 31421-31427). Synaptotagmin I (Syt I), a possible Ca(2+) sensor for neurotransmitter release, showed both Ca(2+)-dependent (via the C2 domain) and -independent (via the NH(2)-terminal domain) self-oligomerization, which are thought to be important for synaptic vesicle exocytosis. However, little is known about the relationship between these two interactions and the Ca(2+)-dependent oligomerization properties of other synaptotagmin isoforms. In this study, we first examined the Ca(2+)-dependent self-oligomerization properties of synaptotagmin family by co-expression of T7- and FLAG-tagged Syts (full-length or cytoplasmic domain) in COS-7 cells. We found that Syt VII is a unique class of synaptotagmins that only showed robust Ca(2+)-dependent self-oligomerization at the cytoplasmic domain with EC(50) values of about 150 micrometer Ca(2+). In addition, Syt VII preferentially interacted with the previously described subclass of Syts (V, VI, and X) in a Ca(2+)-dependent manner. Co-expression of full-length and cytoplasmic portion of Syts VII (or II) indicate that Syt VII cytoplasmic domain oligomerizes in a Ca(2+)-dependent manner without being tethered at the NH(2)-terminal domain, whereas Ca(2+)-dependent self-oligomerization at the cytoplasmic domain of other isoforms (e.g. Syt II) occurs only when the two molecules are tethered at the NH(2)-terminal domain.  相似文献   

2.
Synaptotagmin VII (Syt VII), a proposed regulator for Ca2+-dependent exocytosis, showed a robust Ca2+-dependent oligomerization property via its two C2 domains (Fukuda, M., and Mikoshiba, K. (2001) J. Biol. Chem. 276, 27670-27676), but little is known about its structure or the critical residues directly involved in the oligomerization interface. In this study, site-directed mutagenesis and chimeric analysis between Syt I and Syt VII showed that three Asp residues in Ca2+-binding loop 1 or 3 (Asp-172, Asp-303, and Asp-357) are crucial to robust Ca(2+)-dependent oligomerization. Unlike Syt I, however, the polybasic sequence in the beta4 strands of the C2 structures (so-called "C2 effector domain") is not involved in the Ca2+-dependent oligomerization of Syt VII. The results also showed that the Ca2+-binding loops of the two C2 domains cooperatively mediate Syt VII oligomerization (i.e. the presence of redundant Ca2+-binding site(s)) as well as the importance of Ca2+-dependent oligomerization of Syt VII in Ca2+-regulated secretion. Expression of wild-type tandem C2 domains of Syt VII in PC12 cells inhibited Ca2+-dependent neuropeptide Y release, whereas mutant fragments lacking Ca2+-dependent oligomerization activity had no effect. Finally, rotary-shadowing electron microscopy showed that the Ca2+-dependent oligomer of Syt VII is "a large linear structure," not an irregular aggregate. By contrast, in the absence of Ca2+ Syt VII molecules were observed to form a globular structure. Based on these results, we suggest that the linear Ca2+-dependent oligomer may be aligned at the fusion site between vesicles and plasma membrane and modulate Ca2+-regulated exocytosis by opening or dilating fusion pores.  相似文献   

3.
Synaptotagmins (Syts) are transmembrane proteins with two Ca(2+)-binding C(2) domains in their cytosolic region. Syt I, the most widely studied isoform, has been proposed to function as a Ca(2+) sensor in synaptic vesicle exocytosis. Several of the twelve known Syts are expressed primarily in brain, while a few are ubiquitous (Sudhof, T.C., and J. Rizo. 1996. Neuron. 17: 379-388; Butz, S., R. Fernandez-Chacon, F. Schmitz, R. Jahn, and T.C. Sudhof. 1999. J. Biol. Chem. 274:18290-18296). The ubiquitously expressed Syt VII binds syntaxin at free Ca(2+) concentrations ([Ca(2+)]) below 10 microM, whereas other isoforms require 200-500 microM [Ca(2+)] or show no Ca(2+)-dependent syntaxin binding (Li, C., B. Ullrich, Z. Zhang, R.G.W. Anderson, N. Brose, and T.C. Sudhof. 1995. Nature. 375:594-599). We investigated the involvement of Syt VII in the exocytosis of lysosomes, which is triggered in several cell types at 1-5 microM [Ca(2+)] (Rodríguez, A., P. Webster, J. Ortego, and N.W. Andrews. 1997. J. Cell Biol. 137:93-104). Here, we show that Syt VII is localized on dense lysosomes in normal rat kidney (NRK) fibroblasts, and that GFP-tagged Syt VII is targeted to lysosomes after transfection. Recombinant fragments containing the C(2)A domain of Syt VII inhibit Ca(2+)-triggered secretion of beta-hexosaminidase and surface translocation of Lgp120, whereas the C(2)A domain of the neuronal- specific isoform, Syt I, has no effect. Antibodies against the Syt VII C(2)A domain are also inhibitory in both assays, indicating that Syt VII plays a key role in the regulation of Ca(2+)-dependent lysosome exocytosis.  相似文献   

4.
Synaptotagmins constitute a family of membrane proteins that are characterized by one transmembrane region and two C2 domains. Recent genetic and biochemical studies have indicated that oligomerization of synaptotagmin (Syt) I is important for expression of function during exocytosis of synaptic vesicles. However, little is known about hetero-oligomerization in the synaptotagmin family. In this study, we showed that the synaptotagmin family is a type I membrane protein (N(lumen)/C(cytoplasm)) by introducing an artificial N-glycosylation site at the N-terminal domain, and systematically examined all the possible combinations of hetero-oligomerization among synaptotagmin family proteins (Syts I-XI). We classified the synaptotagmin family into four distinct groups based on differences in Ca(2+)-dependent and -independent oligomerization activity. Group A Syts (III, V, VI, and X) form strong homo- and hetero-oligomers by disulfide bonds at an N-terminal cysteine motif irrespective of the presence of Ca(2+) [Fukuda, M., Kanno, E., and Mikoshiba, K. (1999) J. Biol. Chem. 274, 31421-31427]. Group B Syts (I, II, VIII, and XI) show moderate homo-oligomerization irrespective of the presence of Ca(2+). Group C synaptotagmins are characterized by weak Ca(2+)-dependent (Syts IX) or no homo-oligomerization activity (Syt IV). Syt VII (Group D) has unique Ca(2+)-dependent homo-oligomerization properties with EC(50) values of about 150 microM Ca(2+) [Fukuda, M., and Mikoshiba, K. (2000) J. Biol. Chem. 275, 28180-28185]. Syts IV, VIII, and XI did not show any apparent hetero-oligomerization activity, but some sets of synaptotagmin isoforms can hetero-oligomerize in a Ca(2+)-dependent and/or -independent manner. Our data suggest that Ca(2+)-dependent and -independent hetero-oligomerization of synaptotagmins may create a variety of Ca(2+)-sensors.  相似文献   

5.
The C2B domain of synaptotagmin I is a Ca2+-binding module   总被引:5,自引:0,他引:5  
Ubach J  Lao Y  Fernandez I  Arac D  Südhof TC  Rizo J 《Biochemistry》2001,40(20):5854-5860
Synaptotagmin I is a synaptic vesicle protein that contains two C(2) domains and acts as a Ca(2+) sensor in neurotransmitter release. The Ca(2+)-binding properties of the synaptotagmin I C(2)A domain have been well characterized, but those of the C(2)B domain are unclear. The C(2)B domain was previously found to pull down synaptotagmin I from brain homogenates in a Ca(2+)-dependent manner, leading to an attractive model whereby Ca(2+)-dependent multimerization of synaptotagmin I via the C(2)B domain participates in fusion pore formation. However, contradictory results have been described in studies of Ca(2+)-dependent C(2)B domain dimerization, as well as in analyses of other C(2)B domain interactions. To shed light on these issues, the C(2)B domain has now been studied using biophysical techniques. The recombinant C(2)B domain expressed as a GST fusion protein and isolated by affinity chromatography contains tightly bound bacterial contaminants despite being electrophoretically pure. The contaminants bind to a polybasic sequence that has been previously implicated in several C(2)B domain interactions, including Ca(2+)-dependent dimerization. NMR experiments show that the pure recombinant C(2)B domain binds Ca(2+) directly but does not dimerize upon Ca(2+) binding. In contrast, a cytoplasmic fragment of native synaptotagmin I from brain homogenates, which includes the C(2)A and C(2)B domains, participates in a high molecular weight complex as a function of Ca(2+). These results show that the recombinant C(2)B domain of synaptotagmin I is a monomeric, autonomously folded Ca(2+)-binding module and suggest that a potential function of synaptotagmin I multimerization in fusion pore formation does not involve a direct interaction between C(2)B domains or requires a posttranslational modification.  相似文献   

6.
Synaptotagmin (Syt) constitutes a large family of putative membrane trafficking proteins that share a short extracellular domain, a single N-terminal transmembrane domain, and C-terminal tandem C2 domains. In this study, I identified and characterized a novel member of the Syt family (named Syt XV-a) in the mouse, the rat, and humans. Although Syt XV-a protein has a short hydrophobic region at the very end of the N terminus (i.e., lacks a putative extracellular domain), biochemical and cellular analyses have indicated that the short hydrophobic region (amino acids 5-22) is sufficient for producing type I membrane topology in cultured cells, the same as in other Syt family proteins. Unlike other Syt isoforms, however, the mouse and human Syt XV have an alternative splicing isoform that lacks the C-terminal portion of the C2B domain (named Syt XV-b). Since the expression of Syt XV-a/b mRNA was mainly found in non-neuronal tissues (e.g., lung and testis) and Syt XV-a C2 domains lack Ca(2+)-dependent phospholipid binding activity, Syt XV-a is classified as a non-neuronal, Ca(2+)-independent Syt.  相似文献   

7.
Synaptotagmin I (Syt I), a proposed major Ca(2+) sensor in the central nervous system, has been hypothesized as functioning in an oligomerized state during neurotransmitter release. We previously showed that Syts I, II, VII, and VIII form a stable SDS-resistant, beta-mercaptoethanol-insensitive, and Ca(2+)-independent oligomer surrounding the transmembrane domain (Fukuda, M., and Mikoshiba, K. (2000) J. Biol. Chem. 275, 28180-28185), but little is known about the molecular mechanism of the Ca(2+)-independent oligomerization by the synaptotagmin family. In this study, we analyzed the Ca(2+)-independent oligomerization properties of Syt I and found that it shows two distinct forms of self-oligomerization activity: stable SDS-resistant self-oligomerization activity and relatively unstable SDS-sensitive self-oligomerization activity. The former was found to be mediated by a post-translationally modified (i.e. fatty-acylated) cysteine (Cys) cluster (Cys-74, Cys-75, Cys-77, Cys-79, and Cys-82) at the interface between the transmembrane and spacer domains of Syt I. We also show that the number of Cys residues at the interface between the transmembrane and spacer domains determines the SDS- resistant oligomerizing capacity of each synaptotagmin isoform: Syt II, which contains seven Cys residues, showed the strongest SDS-resistant oligomerizing activity in the synaptotagmin family, whereas Syt XII, which has no Cys residues, did not form any SDS-resistant oligomers. The latter SDS-sensitive self-oligomerization of Syt I is mediated by the spacer domain, because deletion of the whole spacer domain, including the Cys cluster, abolished it, whereas a Syt I(CA) mutant carrying Cys to Ala substitutions still exhibited self-oligomerization. Based on these results, we propose that the oligomerization of the synaptotagmin family is regulated by two distinct mechanisms: the stable SDS-resistant oligomerization is mediated by the modified Cys cluster, whereas the relatively unstable (SDS-sensitive) oligomerization is mediated by the environment of the spacer domain.  相似文献   

8.
Vrljic M  Strop P  Hill RC  Hansen KC  Chu S  Brunger AT 《Biochemistry》2011,50(46):9998-10012
Synaptotagmin 1 (Syt1) is a Ca(2+) sensor for SNARE-mediated, Ca(2+)-triggered synaptic vesicle fusion in neurons. It is composed of luminal, transmembrane, linker, and two Ca(2+)-binding (C2) domains. Here we describe expression and purification of full-length mammalian Syt1 in insect cells along with an extensive biochemical characterization of the purified protein. The expressed and purified protein is properly folded and has increased α-helical content compared to the C2AB fragment alone. Post-translational modifications of Syt1 were analyzed by mass spectrometry, revealing the same modifications of Syt1 that were previously described for Syt1 purified from brain extract or mammalian cell lines, along with a novel modification of Syt1, tyrosine nitration. A lipid binding screen with both full-length Syt1 and the C2AB fragments of Syt1 and Syt3 isoforms revealed new Syt1-lipid interactions. These results suggest a conserved lipid binding mechanism in which Ca(2+)-independent interactions are mediated via a lysine rich region of the C2B domain while Ca(2+)-dependent interactions are mediated via the Ca(2+)-binding loops.  相似文献   

9.
Synaptotagmin (Syt) I-deficient phaeochromocytoma (PC12) cell lines show normal Ca(2+)-dependent norepinephrine (NE) release (Shoji-Kasai, Y., Yoshida, A., Sato, K., Hoshino, T., Ogura, A., Kondo, S., Fujimoto, Y., Kuwahara, R., Kato, R., and Takahashi, M. (1992) Science 256, 1821-1823). To identify an alternative Ca(2+) sensor, we searched for other Syt isoforms in Syt I-deficient PC12 cells and identified Syt IX, an isoform closely related to Syt I, as an abundantly expressed dense-core vesicle protein. Here we show that Syt IX is required for the Ca(2+)-dependent release of NE from PC12 cells. Antibodies directed against the C2A domain of either Syt IX or Syt I inhibited Ca(2+)-dependent NE release in permeable PC12 cells indicating that both Syt proteins function in dense-core vesicle exocytosis. Our results support the idea that Syt family proteins that co-reside on secretory vesicles may function cooperatively and redundantly as potential Ca(2+) sensors for exocytosis.  相似文献   

10.
The synaptic vesicle protein synaptotagmin I has been proposed to serve as a Ca(2+) sensor for rapid exocytosis. Synaptotagmin spans the vesicle membrane once and possesses a large cytoplasmic domain that contains two C2 domains, C2A and C2B. Multiple Ca(2+) ions bind to the membrane proximal C2A domain. However, it is not known whether the C2B domain also functions as a Ca(2+)-sensing module. Here, we report that Ca(2+) drives conformational changes in the C2B domain of synaptotagmin and triggers the homo- and hetero-oligomerization of multiple isoforms of the protein. These effects of Ca(2)+ are mediated by a set of conserved acidic Ca(2)+ ligands within C2B; neutralization of these residues results in constitutive clustering activity. We addressed the function of oligomerization using a dominant negative approach. Two distinct reagents that block synaptotagmin clustering potently inhibited secretion from semi-intact PC12 cells. Together, these data indicate that the Ca(2)+-driven clustering of the C2B domain of synaptotagmin is an essential step in excitation-secretion coupling. We propose that clustering may regulate the opening or dilation of the exocytotic fusion pore.  相似文献   

11.
12.
Synaptotagmins (Syt), rabphilin-3A, and Doc2 belong to a family of carboxyl terminal type (C-type) tandem C2 proteins and are thought to be involved in vesicular trafficking. We have cloned and characterized a novel family of C-type tandem C2 proteins, designated Slp1-3 (synaptotagmin-like protein 1-3). The Slp1-3 C2 domains show high homology to granuphilin-a C2 domains, but the amino-terminal domain of Slp1-3 does not contain any known protein motifs or a transmembrane domain. A subcellular fractionation study indicated that Slp1-3 proteins are peripheral membrane proteins. Phospholipid binding experiments indicated that Slp3 is a Ca(2+)-dependent isoform, but Slp1 and Slp2 are Ca(2+)-independent isoforms, because only the Slp3 C2A domain showed Ca(2+)-dependent phospholipid binding activity. The C-terminus of Slp1-3 also bound neurexin Ialpha in vitro, in the same manner as Syt family proteins, which may be important for the membrane association of Slp1-3. In addition, Slp family proteins are differentially distributed in different mouse tissues and at different developmental stages.  相似文献   

13.
Synaptotagmin I (or II), a possible Ca(2+)-sensor of synaptic vesicles, has two functionally distinct C2 domains: the C2A domain binds Ca2+ and the C2B domain binds inositol high polyphosphates (IP4, IP5, and IP6). Ca(2+)-regulated exocytosis of secretory vesicles is proposed to be activated by Ca2+ binding to the C2A domain and inhibited by inositol polyphosphate binding to the C2B domain. Synaptotagmins now constitute a large family and are thought to be involved in both regulated and constitutive vesicular trafficking. They are classified from their distribution as neuronal (synaptotagmin I-V, X, and XI) and the ubiquitous type (synaptotagmin VI-IX). Among them, synaptotagmins III, V, VI and X are deficient in IP4 binding activity due to the amino acid substitutions in the C-terminal region of the C2B domain, suggesting that these isoforms can work for vesicular trafficking even in the presence of inositol high polyphosphates. Synaptotagmin I is also known to be present in neuronal growth cone vesicles. Antibody against the C2A domain (anti-C2A) that inhibits Ca(2+)-regulated exocytosis also blocked neurite outgrowth of the chick dorsal root ganglion (DRG) neuron, suggesting that Ca(2+)-dependent synaptotagmin activation is also crucial for neurite outgrowth.  相似文献   

14.
15.
Synaptotagmins (Syts) are a family of vesicle proteins that have been implicated in both regulated neurosecretion and general membrane trafficking. Calcium-dependent interactions mediated through their C2 domains are proposed to contribute to the mechanism by which Syts trigger calcium-dependent neurotransmitter release. Syt IV is a novel member of the Syt family that is induced by cell depolarization and has a rapid rate of synthesis and a short half-life. Moreover, the C2A domain of Syt IV does not bind calcium. We have examined the biochemical and functional properties of the C2 domains of Syt IV. Consistent with its non-calcium binding properties, the C2A domain of Syt IV binds syntaxin isoforms in a calcium-independent manner. In neuroendocrine pheochromocytoma (PC12) cells, Syt IV colocalizes with Syt I in the tips of the neurites. Microinjection of the C2A domain reveals that calcium-independent interactions mediated through this domain of Syt IV inhibit calcium-mediated neurotransmitter release from PC12 cells. Conversely, the C2B domain of Syt IV contains calcium binding properties, which permit homo-oligomerization as well as hetero-oligomerization with Syt I. Our observation that different combinatorial interactions exist between Syt and syntaxin isoforms, coupled with the calcium stimulated hetero-oligomerization of Syt isoforms, suggests that the secretory machinery contains a vast repertoire of biochemical properties for sensing calcium and regulating neurotransmitter release accordingly.  相似文献   

16.
Synaptotagmin (Syt) is a family of type I membrane proteins that consists of a single transmembrane domain, a spacer domain, two Ca(2+)-binding C2 domains, and a short C terminus. We recently showed that deletion of the short C terminus (17 amino acids) of Syt IV prevented the Golgi localization of Syt IV proteins in PC12 cells and induced granular structures of various sizes in the cell body by an unknown mechanism (Fukuda, M., Ibata, K., and Mikoshiba, K. (2001) J. Neurochem. 77, 730-740). In this study we showed by electron microscopy that these structures are crystalloid endoplasmic reticulum (ER), analyzed the mechanism of its induction, and demonstrated that: (a) mutation or deletion of the evolutionarily conserved WHXL motif in the C terminus of the synaptotagmin family (Syt DeltaC) destabilizes the C2B domain structure (i.e. causes misfolding of the protein), probably by disrupting the formation of stable anti-parallel beta-sheets between the beta-1 and beta-8 strands of the C2B domain; (b) the resulting malfolded proteins accumulate in the ER rather than being transported to other membrane structures (e.g. the Golgi apparatus), with the malfolded proteins also inducing the expression of BiP (immunoglobulin binding protein), one of the ER stress proteins; and (c) the ERs in which the Syt DeltaC proteins have accumulated associate with each other as a result of oligomerization capacity of the synaptotagmin family, because the Syt IDeltaC mutant, which lacks oligomerization activity, cannot induce crystalloid ER. Our findings indicate that the conserved WHXL motif is important not only for protein interaction site but for proper folding of the C2B domain.  相似文献   

17.
Among the 16 known vertebrate synaptotagmins, only Syt I, IV and VII are also present in C. elegans and Drosophila, suggesting that these isoforms play especially important roles in vivo. Extensive evidence indicates that Syt I is a synaptic vesicle Ca(2+) sensor essential for rapid neurotransmitter release. It has been suggested that the ubiquitously expressed Syt VII also regulates synaptic vesicle exocytosis, despite its presence in several tissues in addition to the brain. Here, we discuss recent genetic and biochemical evidence that does not support this view. Syt VII null mutants do not have a neurological phenotype, and the protein is found on the membrane of lysosomes and some non-synaptic secretory granules, where it regulates Ca(2+)-triggered exocytosis and plasma membrane repair.  相似文献   

18.
Synaptotagmin (Syt) family members consist of six separate domains: a short amino terminus, a single transmembrane domain, a spacer domain, a C2A domain, a C2B domain and a short carboxyl (C) terminus. Despite sharing the same domain structures, several synaptotagmin isoforms show distinct subcellular localization. Syt IV is mainly localized at the Golgi, while Syt I, a possible Ca(2+)-sensor for secretory vesicles, is localized at dense-core vesicles and synaptic-like microvesicles in PC12 cells. In this study, we sought to identify the region responsible for the Golgi localization of Syt IV by immunocytochemical and biochemical analyses as a means of defining the distinct subcellular localization of the synaptotagmin family. We found that the unique C-terminus of the spacer domain (amino acid residues 73-144) between the transmembrane domain and the C2A domain is essential for the Golgi localization of Syt IV. In addition, the short C-terminus is probably involved in proper folding of the protein, especially the C2B domain. Without the C-terminus, Syt IVdeltaC proteins are not targeted to the Golgi and seem to colocalize with an endoplasmic reticulum (ER) marker (i.e. induce crystalloid ER-like structures). On the basis of these results, we propose that the divergent spacer domain among synaptotagmin isoforms may contain certain signals that determine the final destination of each isoform.  相似文献   

19.
Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes   总被引:16,自引:0,他引:16  
Reddy A  Caler EV  Andrews NW 《Cell》2001,106(2):157-169
Plasma membrane wounds are repaired by a mechanism involving Ca(2+)-regulated exocytosis. Elevation in intracellular [Ca(2+)] triggers fusion of lysosomes with the plasma membrane, a process regulated by the lysosomal synaptotagmin isoform Syt VII. Here, we show that Ca(2+)-regulated exocytosis of lysosomes is required for the repair of plasma membrane disruptions. Lysosomal exocytosis and membrane resealing are inhibited by the recombinant Syt VII C(2)A domain or anti-Syt VII C(2)A antibodies, or by antibodies against the cytosolic domain of Lamp-1, which specifically aggregate lysosomes. We further demonstrate that lysosomal exocytosis mediates the resealing of primary skin fibroblasts wounded during the contraction of collagen matrices. These findings reveal a fundamental, novel role for lysosomes: as Ca(2+)-regulated exocytic compartments responsible for plasma membrane repair.  相似文献   

20.
Synaptotagmins I and II are Ca(2+) binding proteins of synaptic vesicles essential for fast Ca(2+)-triggered neurotransmitter release. However, central synapses and neuroendocrine cells lacking these synaptotagmins still exhibit Ca(2+)-evoked exocytosis. We now propose that synaptotagmin VII functions as a plasma membrane Ca(2+) sensor in synaptic exocytosis complementary to vesicular synaptotagmins. We show that alternatively spliced forms of synaptotagmin VII are expressed in a developmentally regulated pattern in brain and are concentrated in presynaptic active zones of central synapses. In neuroendocrine PC12 cells, the C(2)A and C(2)B domains of synaptotagmin VII are potent inhibitors of Ca(2+)-dependent exocytosis, but only when they bind Ca(2+). Our data suggest that in synaptic vesicle exocytosis, distinct synaptotagmins function as independent Ca(2+) sensors on the two fusion partners, the plasma membrane (synaptotagmin VII) versus synaptic vesicles (synaptotagmins I and II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号