首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Conventional population genetics uses as primitive variables the frequencies and fitnesses of individual genes. This paper develops a formalism whose primitive variables are the frequencies and fitnesses of genotypes and environmental histories in a population. From the mathematical relation that describes genetic variation and selection of genotypes and environmental histories we derive a sequence of more specialized equations, including those of the conventional theory. Some familiar formulas of the conventional theory (including Fisher's fundamental theorem, the formula relating the rate of change of a metric character to selection pressure, and the definitions of broad and narrow heritability) are shown to be special cases of simpler and more general formulas. It is shown that the “genotypic value” of a trait, together with its heritability, may depend strongly on genotype-environment correlations.A generalization of Fisher's fundamental theorem shows that the rate of evolution of a trait depends on the skewness of its fitness distribution. An equation relating the second derivative of the mean fitness to the skewness is derived.Finally, the formalism is applied in a preliminary way to a recent theory of genetic variation (Layzer,1978a), according to which the genetic variability of a trait is selected along with the trait itself. It is shown that there is positive feedback between the two kinds of selection.  相似文献   

10.
11.
Homology is an essential idea of biology, referring to the historical continuity of characters, but it is also conceptually highly elusive. The main difficulty is the apparently loose relationship between morphological characters and their genetic basis. Here I propose that it is the historical continuity of gene regulatory networks rather than the expression of individual homologous genes that underlies the homology of morphological characters. These networks, here referred to as 'character identity networks', enable the execution of a character-specific developmental programme.  相似文献   

12.
13.
Molecular genetics and developmental biology   总被引:1,自引:0,他引:1  
  相似文献   

14.
15.
Recent advances in cell and molecular biology have generated important tools to probe developmental questions. In addition, new genetic model systems such as Danio rerio now make large-scale vertebrate early developmental mutant screens feasible. Nonetheless, some developmental questions remain difficult to study because of the need for finer temporal, spatial, or tuneable control of gene function within a developmental system. New uses for old teratogens as well as novel chemical modulators of development have begun to fill this void.  相似文献   

16.
17.
18.
19.
A recent study reveals specific functions of Hox3/zerknüllt (zen) in the extraembryonic and embryonic primordia of the red flour beetle, Tribolium castaneum. The results shed light on the functional evolution of bicoid, a zen paralogue of higher flies, which determines anterior body parts.  相似文献   

20.
While it has been long appreciated that sugar-modified proteins coat the cell surface, their functions are poorly understood. Here, I describe recent genetic studies that demonstrate that one class of sugar-modified proteins, cell-surface proteoglycans, play crucial roles in morphogenesis, growth regulation and tumor suppression. Mutations that affect individual proteoglycans or the enzymes required for glycosaminoglycan synthesis regulate Wingless and Decapentaplegic signaling in Drosophila, and body size in mice and humans. Compromising proteoglycan function is also associated with the development of Wilm's tumors and hereditary multiple exostoses. In this review, these biological findings are placed in the context of proteoglycan biochemistry and molecular function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号