首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sediment trap deployment was made at a station (64°42'S, 139°59'E) at five depths (537, 796, 1,259, 1,722, 2,727 m) in the marginal ice zone (MIZ) of the Antarctic Ocean during a summer productive period from 26 December 1994 to 20 January 1995. This aim of the study was to reveal a possible occurrence of a sporadic bloom in surface layers and to evaluate the role of fast-sinking particles in transportation processes of bloom-derived material down to mesopelagic and bathypelagic layers. During the observation, a marked flux increase (70.5 mg C m-2 day-1, 7.7 mg N m-2 day-1) was observed at the depth of 537 m on 7-9 January. The increased flux at 537 m decreased with depth and time. The same mass of sinking particles forming the flux maximum at each depth sank down from the shallowest trap (537 m) to the deepest trap (2,727 m) within 4-11 days, indicating that these particles were transported downward to the bottom with the sinking rate of >200 m day-1. Collected particles were composed of two major particle fractions; one was dominated by fecal pellets of macrozooplankton (mainly Euphausia superba) with relatively fast sinking rates (FSP; fast-sinking particles) and the other by minute diatoms of Fragilariopsis curta with slow sinking rates (SSP; slowly sinking particles). According to the comparison of time depth changes of these two fractions, the SSP had unexpectedly faster sinking rates comparable with the FSP during the periods of maximum fluxes, probably indicating the SSP were transformed from the FSP during sinking. The present result strongly suggests that a local bloom of F. curta and intensified zooplankton grazing activities occurred in surface layers in a few days in the MIZ, and then the egested fecal pellets were rapidly transported downward with fragmentation processes into small-sized minute particles in mesopelagic and bathypelagic layers.  相似文献   

2.
Downward particle fluxes measured by means of sediment traps to a shallow semi-closed bay (Johnson’s Dock, Livingston Island) and to a deep basin in the western Bransfield Strait (Antarctic Peninsula) showed the important role of glaciers as sediment carriers and suppliers to the ocean in a continent without major rivers such as Antarctica. The trap moored in Johnson’s Dock collected coarse sediment (>1 mm mesh) not observed in the offshore traps, which mainly received fine sediment and faecal pellets. The annual total mass flux (TMF) to the coastal zone (15 m) was 900- and three times that to mid-depth (500 m) and near-bottom (1,000 m) traps, respectively. The fine sediment flux was especially important due to its biogenic particle contents. Despite the differences in TMF to the coastal zone and near the bottom in the deep basin, the organic carbon (OC) flux was similar in both environments (16 and 18 g m−2, respectively), whereas biogenic silica (BSi) flux increased three times with depth (75 and 201 g m−2, respectively). These fluxes imply that an important part of the particulate organic matter deposited in the coastal zone is advected basinward within the fine-particle flux. Thus, benthos in deep areas depends largely on the lateral transport of biogenic material produced in shallow environments near the coast. It is also proposed that the disintegration of Antarctic ice shelves and the consequent increment of ice calving may produce local devastations of ecological importance not only on the shallow but also on the rich Antarctic deep-sea benthic communities due to an increment of iceberg scouring and reduction of the organic matter supply.  相似文献   

3.
Photosynthetic activity of the moss Sanionia uncinata (Hedw.) Loeske was investigated on Léonie Island (67°35'S, 68°20'W, Antarctic Peninsula) in response to short-term changes of UV-B radiation. The UV-environment of natural mat formations dominated by S. uncinata was altered using filter screens. Two filter experiments were conducted in the Antarctic summers 1998 and 1999. A third filter experiment was conducted during springtime ozone depletion in October 1998. Photosynthetic activity of S. uncinata was mainly determined by photosynthetically active photon flux density (PPFD). Light response of relative electron transport rate through photosystem II (rel ETR=jF/Fm'2PPFD) remained unaffected by ambient summer levels of UV-B radiation. The same was found for net photosynthesis and dark respiration. In October 1998, S. uncinata was mainly metabolically inactive due to low temperatures. No significant levels of DNA-damage measured as cyclobutane pyrimidine dimers (CPDs) were induced by ambient summer levels of UV-B. Artificially enhanced UV-B radiation supplying a Setlow-DNA-dose of 8.7 kJ mф dayу UV-B led to formation of 7Dž CPD (106 nucleotides)-1. It is concluded that current ambient summer levels of UV-B radiation do not affect photosynthetic activity in S. uncinata.  相似文献   

4.
Transparent exopolymer particles (TEP) compose an important pool of particulate organic matter (POM) in aquatic systems. However, no studies of TEP contribution to C export to sediment exist for freshwaters. We quantify the contribution of TEP to C sinking fluxes in an oligotrophic reservoir (Quéntar, Southern Spain) by monitoring TEP in the water column and TEP, particulate organic carbon (POC) and dry weight in sedimentation traps. TEP sinking fluxes ranged from 0.73 to 183.23 mg C m?2 day?1 and from 0.51 to 177.04 mg C m?2 day?1 at the surface and at the bottom layer, respectively. These values represent that, over an annual basis, 5.59 Ton TEP-C (over 61.32 Ton POC) are exported, on an average, from the water column to the sediment of Quentar reservoir. TEP concentrations (average = 48.0 μg XG eq l?1) were lower than the scarce data reported for freshwaters. No significant relationships between TEP and Chl a concentrations or BA were observed. Average value for daily sedimentation flux (6.63 g Dry Weight m?2 day?1) in the study reservoir was higher than that documented for low productive natural aquatic ecosystems as a consequence of the high amount of allochthonous material input characterizing reservoirs. TEP contributed to C export to sediment with a value that range from 0.02 to 31%. Our results show that even in man-made systems, which are predominantly controlled by allochthonous inputs, TEP may be relevant for explaining POM settling fluxes.  相似文献   

5.
Measurement of the photosynthetic production rate in Lake Biwawas camed out from May 1985 to September 1987. In the light-saturatedlayer, the seasonal variation in the photosynthesis rate perchlorophyll a was regulated by water temperature. The depth-integratedphotosynthetic production rate was 0.21-1.48 g C m–2 day–1and the maximum value was observed in midsummer when the watertemperature of the mixed surface layer was highesL The criticalnutrient for photosynthesis may be dissolved reactive phosphorus,which was generally <1 µg P 1–1 throughout theobservation period. In the trophogenic layer, respiratory organiccarbon consumption, estimated from measurement of respiratoiyelectron transport system activity, was 0.35-1.07 (mean 0.66)g C m–1 day–1 and corresponded, on average, to 79%of the photosynthetic carbon production rate. This implies thatthe major part of photosynthetic fixed organic matter mightbe recycled in the trophogenic layer. The estimated settlingorganic carbon flux at 20 m depth, from calculation of theseparameters and changes in the particulate organic carbon concentration,was 0.01 (-0.09 to 0.13) g C m–1 day–1 The meansettling organic carbon flux measured by sediment trap at 20m was 0.19 (0.09-0.31) g C m–1 day–1 higher thanthe estimated value. It seemed that organic matter collectedby sediment trap may contain allochthonous matter and resuspendedepilimnetic sediment matter.  相似文献   

6.
The significance of phenological characteristics, stomatal conductance of the leaves, and stem water storage fluctuations for the regulation of xylem sap flow in an evergreen (Carapa guianensis Aubl.), in a semi-deciduous (Swietenia macrophylla King), and in a deciduous (Cedrela odorata L.) Meliaceae species was studied in a 7-year-old plantation near Manaus, Brazil. The study responds to the increasing demand for knowledge on the water relations of highly exploited timber trees of the Amazon. Xylem sap flow measurements indicated that the daily sap flow of Carapa (3.8 l day-1 tree-1 to 16.4 l day-1 tree-1) exceeded the daily sap flow of Swietenia (2.4 l day-1 tree-1 to 7.0 l day-1 tree-1) and Cedrela (1.6 l day-1 tree-1 to 11.6 l day-1 tree-1) during the entire year, although the highest flux densities were measured in Cedrela. The decrease in xylem sap flow observed in periods with low soil water potentials and high atmospheric vapor saturation deficits was more pronounced in the deciduous (Cedrela) and semi-deciduous species (Swietenia) than the evergreen species (Carapa). Carapa, which has the highest daily sap flow, had the highest biomass and sapwood portion. The high flux densities measured in Cedrela most likely result from the large earlywood vessels in this species. The seasonal variation of xylem sap flow of the three species was correlated with the stomatal conductance of the leaves measured by infiltration experiments. Stem water storage fluctuations in Carapa and Swietenia were predominantly due to transpiration; in Cedrela it was predominantly due to evaporative water loss on the stem surface during dry periods.  相似文献   

7.
. The dominant Arctic under-ice amphipod Gammarus wilkitzkii consumes a wide range of food items. The carnivorous feeding activity and energy budget of this large species were studied using three different approaches. Maximum potential ingestion rates Imax estimated from an allometric function taken from the literature and based on body mass were 2.1ǂ.4% of body carbon day-1. Based on respiration measurements, the specific ingestion rates required to meet metabolic demands were lower (1.4ǂ.4% of body carbon day-1). Feeding experiments, in which co-occurring pelagic calanoid (Calanus hyperboreus) or sympagic harpacticoid (Halectinosoma sp.) copepods were offered as prey, yielded actual ingestion rates of 8.0LJ.6% of body carbon day-1 and 0.1ǂ.1% of body carbon day-1, respectively. These results indicate that predatory feeding on pelagic copepods may constitute an important food source for G. wilkitzkii. Abundances of G. wilkitzkii at the ice underside (median: 1.6 ind. m-2), Calanus spp. in the upper metre below the ice (2.6 ind. m-3), and Halectinosoma sp. in the lowermost 2-3 cm of the ice (393.5 ind. m-2) were determined from several multi-year pack-ice floes in the northern Greenland Sea and Fram Strait. Potential predation impact of G. wilkitzkii was estimated by combining information on ingestion rates with population densities. It was very high on Calanus spp. in the under-ice water layer (61.5% of the under-ice standing stock day-1), but comparatively low on Halectinosoma sp. in the bottom of the ice (3.8% of standing stock day-1). The observation of G. wilkitzkii preying on pelagic copepods in the under-ice water layer represents a hitherto unknown but obviously significant process and a new direction in the cryo-pelagic coupling in the Arctic marine ecosystem.  相似文献   

8.
Understanding the ecological role of benthic microalgae, a highly productive component of coral reef ecosystems, requires information on their spatial distribution. The spatial extent of benthic microalgae on Heron Reef (southern Great Barrier Reef, Australia) was mapped using data from the Landsat 5 Thematic Mapper sensor, integrated with field measurements of sediment chlorophyll concentration and reflectance. Field-measured sediment chlorophyll concentrations, ranging from 23-1,153 mg chl a m-2, were classified into low, medium, and high concentration classes (1-170, 171-290, and >291 mg chl a m-2) using a K-means clustering algorithm. The mapping process assumed that areas in the Thematic Mapper image exhibiting similar reflectance levels in red and blue bands would correspond to areas of similar chlorophyll a levels. Regions of homogenous reflectance values corresponding to low, medium, and high chlorophyll levels were identified over the reef sediment zone by applying a standard image classification algorithm to the Thematic Mapper image. The resulting distribution map revealed large-scale (>1 km2) patterns in chlorophyll a levels throughout the sediment zone of Heron Reef. Reef-wide estimates of chlorophyll a distribution indicate that benthic microalgae may constitute up to 20% of the total benthic chlorophyll a at Heron Reef, and thus contribute significantly to total primary productivity on the reef.  相似文献   

9.
In-situ estimates of fast-ice algal productivity at Cape Evans, McMurdo Sound, in 1999 were lower than at the same site in previous years. Under-ice irradiance was between 0 and 8 µmol photons m-2 s-1; the ice was between 1.9 and 2.0 m thick and the algal biomass averaged 150 mg chl a m-2, although values as high as 378 mg chl a m-2 were recorded. Production on 11 and 12 November was between 0.053 and 1.474 mg C m-2 h-1. When the data from 11 November were fitted to a hyperbolic tangent function, a multilinear regression gave estimates for Pmax of 0.571 nmol O2 cm-2 s-1, an ! of 0.167 nmol O2 cm-2 s-1 µmol-1 photons m-2 s-1 and an Ek of 3.419 µmol photons m-2 s-1. A Pmax of 2.674 nmol O2 cm-2 s-1, an ! of 0.275 nmol O2 cm-2 s-1 µmol-1 photons m-2 s-1, r of 0.305 nmol O2 cm-2 s-1 and an Ek of 9.724 µmol-1 photons m-2 s-1 were estimated from the 12 November data. The sea-ice algal community was principally comprised of Nitzschia stellata, Entomoneis kjellmanii and Berkeleya adeliensis. Other taxa present included N. lecointei, Fragilariopsis spp., Navicula glaciei, Pleurosigma spp. and Amphora spp. Variations in the method for estimating the thickness of the diffusive boundary layer were not found to significantly affect the measurements of oxygen flux. However, the inability to accurately measure fine-scale variations in biomass is thought to contribute to the scatter of the P versus E data.  相似文献   

10.
Mesozooplankton community structure and grazing impact were investigated at 13 stations in the Polar Frontal Zone during the second Marion Offshore Variability Ecosystem Study (MOVES II), conducted during April 2002. Total integrated chl- a biomass ranged between 11.17 and 28.34 mg chl- a m-2 and was always dominated by nano- and picophytoplankton (<20 µm). Throughout the study, small copepods, mainly Oithona similis and Ctenocalanus vanus, numerically dominated the mesozooplankton community, composing up to 85% (range 30-85%) of the total abundance. Grazing activity of the four most abundant copepods ( O. similis, C. vanus, Calanus simillimus and Clausocalanus spp.), constituting up to 93% of total mesozooplankton abundance, was investigated using the gut fluorescence technique. Results of gut fluorescence analyses indicated that Calanus simillimus and Clausocalanus spp. exhibited diel variability in gut pigments with maximum values recorded at night. In contrast, O. similis and Ctenocalanus vanus did not demonstrate diel variation in gut pigment contents. Ingestion rates of the four copepods ranged from 23.23 to 1462,02 ng(pigm.)ind-1day-1. The combined grazing impact of the four copepods ranged between 1 and 36% of the phytoplankton standing stock per day, with the highest daily impact occurring at stations occupied in the vicinity of the Antarctic Polar Front (~35.86% at station 23). Among the copepods, O. similis and Ctenocalanus vanus represented the most important consumers of phytoplankton biomass, collectively responsible for up to 89% (range 15-89%) of the total daily grazing impact. Carbon specific ingestion rates of the copepods varied between 42 and 320% body carbon per day.  相似文献   

11.
Andrea Abelmann 《Polar Biology》1992,12(3-4):357-372
Summary The study of radiolarians collected during sediment trap experiments in the Drake Passage, the northern Powell Basin, and the King George Basin of the Bransfield Strait provides new information on the fluxes of radiolarian shells in Antarctic waters, on the annual flux pattern, the species distribution and its ecological significance, and on alteration processes of the radiolarian shells in the water column and at the sediment/water interface. A 28-month monitoring with time-series sediment traps in the Bransfield Strait indicates an annual flux pattern characterized by short-term flux pulses during austral summer, which reach daily fluxes of up to 5 × 103 shells m–2 and which account for more than 90% of the total annual flux. The distinct seasonal variations are linked to variations in the sea ice coverage. Other controlling factors are the production of phytoplankton and the impact by zooplankton grazers, e.g., krill. During the summer flux pulses the vertical fluxes of radiolarians range between ca. 3 and 21 × 104 shells m–2, values that are one or more orders of magnitudes lower than fluxes observed at sites in the tropical and northern high-latitude ocean. Significant lateral transport of radiolarians was documented during the austral summer in the Bransfield Strait by a factor of 10 increase of the radiolarian flux in the lower portion of the water column and the species composition trapped in deeper waters. Radiolarian assemblages associated with pelagic and neritic environments characterized by typical Antarctic taxa (Antarctissa spp.) and a group of species with bipolar distribution (e.g. Plectacantha oikiskos, Phormacantha hystrix), respectively, are distinguished. While the signal of polycystine radiolarians is relatively well recorded in the sediments, the shells of phaeodarians, which were observed at fluxes of up to 1 × 103 shells m–2day–1 in the upper portion of the water column, are almost completely dissolved during settling through the water column.  相似文献   

12.
Time-series sediment trap experiments at subtropical (WCT-1) and subarctic (WCT-2) stations in the northwestern Pacific indicate seasonal, latitudinal and depth variations in total particulate, biogenic and foraminiferal fluxes. At the subtropical station, the average total mass flux was 19.4 mg m−2 day−1 in the shallow trap (1060 m) and 21.5–26.1 mg m−2 day−1 in the deep trap (3930 m) during the sampling period. At subarctic station, these values were 91.5–176.9 mg m−2 day−1 in the shallow and 68.6–112.3 mg m−2 day−1 in the deep trap. We recognized 12 and 15 planktonic foraminiferal species at Station WCT-1 and Station WCT-2, respectively. The planktonic foraminiferal flux and species turnover are related to seasonal and interannual changes in source water and water column conditions at both stations. At Station WCT-1, the highest flux was recorded during the summer, with a peak in mid to late June associated with similar flux patterns of the dominant species, Globigerinoides ruber and Globigerinita glutinata. The total flux of foraminiferal tests at the shallow and deep traps is similar in numbers and magnitude. At Station WCT-2, the peaks of total flux of foraminiferal tests at the two trap depths differ in number, and their magnitude in the deep trap is almost half of that in the shallow trap. A distinctive seasonal pattern occurred in the shallow and the deep trap, with a peak in total foraminiferal flux in mid June to mid July. Globigerina quinqueloba, Neogloboquadrina pachyderma and Neogloboquadrina dutertrei dominate the planktonic population throughout the year.Subtropical Station WCT-1 was characterized by low total foraminiferal fluxes and low total mass flux, which is dominated by calcium carbonate and depleted in opal, whereas high foraminiferal fluxes and a high total mass flux dominated by high biogenic opal, and less calcium carbonate and organic matter characterize subarctic Station WCT-2. The foraminiferal carbonate that reaches the seafloor accounts for an average 20–27% and 22–23% of the total calcium carbonate at Station WCT-1 and Station WCT-2, respectively. The primary reason for the difference in flux at both stations thus lies in the different contributions of siliceous and calcareous planktonic assemblages. The seasonal variation in biogenic particulate flux at both stations implies that temporal changes in biological productivity are governed by large-scale seasonal climatic variability and local hydrography.  相似文献   

13.
The aim of this work was to test our hypothesis that pine needles protect themselves against UV-B radiation via anatomical changes in the epidermal layer. This could lead to needle growth reductions if large quantities of assimilates are allocated for the epidermal protective mechanisms at the expense of photosynthetic area. Effects of enhanced UV-B radiation on the needle ontogeny of mature Scots pines (Pinus sylvestris L.) were studied during the second season of a field experiment. Depending on the season and the time of the year (1996-1997), the enhanced UV-B irradiance varied from 0.92 to 5.09 kJ m-2 day-1 UV-BBE compared to 0.54-2.44 kJ m-2 day-1 UV-BBE of ambient radiation. It was found that UV-B treatment accelerated the early development of needles. In 6-day-old enhanced UV-B-treated needles, mesophyll and hypodermic cells were fully differentiated, whereas in ambient-treated needles, no lobate mesophyll cells were seen and hypodermic cells had not yet developed. In fully grown needles, no accelerated differentiation was seen, except that the epidermal cross-sectional area was smaller. The continuation of the experiment will show if such a significant difference only occurs irregularly and incidentally or if it is of consistent significance for needles.  相似文献   

14.
Photosynthetic oxygen production by phytoplankton and community respiration in the Indian sector of the Antarctic Ocean were estimated from changes in oxygen concentrations in light and dark bottles. Gross production varied between 0.1 and 5.1 µmol O2 l-1 day-1. In the same water, community respiration (the sum of oxygen consumption by heterotrophs and phytoplankton) was 0.4-3.6 µmol O2 l-1 day-1, which accounted for 47-343% of the gross production. Algal and heterotrophic respirations were distinguished using some assumptions. These estimates showed that heterotrophic respiration accounted for most of the community respiration (70-91% depending upon the assumptions), indicating that heterotrophic respiration plays an important role in the mineralization of phytoplankton production in the surveyed sea area. Gross production rate correlated with chlorophyll a concentration, showing that the photosynthetic production rate of oxygen depends on the abundance of phytoplankton. Moreover, there was a significant relationship between gross production and community respiration rates. These regression equations suggested that negative net production occurred under the usually low concentration of chlorophyll observed in the Indian sector of the Antarctic Ocean. Hence, the net exchange of carbon dioxide due to biological processes through the sea surface seemed to be not as large as expected in the Antarctic Ocean, although the number of data were limited at this stage.  相似文献   

15.
Fluxes of CO2 and H2O vapour from dense stands of the C4 emergent macrophyte grass Echinochloa polystachya were measured by eddy covariance in both the low water (LW) and high water (HW, flooded) phases of the annual Amazon river cycle at Manaus, Brazil. Typical clear-sky midday CO2 uptake rates by the vegetation stand (including detritus, sediment or water surface) were 30 and 35 µmol CO2 (ground) m-2 s-1 in the LW and HW periods, respectively. A rectangular hyperbola model fitted the responses of "instantaneous" (20- or 30-min average) net CO2 exchange rates to incident photosynthetic photon flux densities (PFD) well. Stand evaporation rates were linearly related to PFD. The major difference in CO2 uptake rates between the two periods was the larger respiration flux during LW due to the CO2 efflux from sediment, roots and litter. Integrated 20- or 30-min fluxes were used to derive relationships between daily CO2 and H2O vapour fluxes and incident radiation. The daily CO2 fluxes were almost linearly related to incident radiation, but there was evidence of saturation at the highest daily radiation totals. Annual productivity estimated from the daily model in 1996-1997 agreed closely with that previously estimated for 1985-1986 from a leaf-scale photosynthetic model, but were some 15% less than those derived at that time from biomass harvests. Both CO2 uptake and water use efficiency were comparable with those found in fertilised maize fields in warm temperate conditions.  相似文献   

16.
Benthic suspension feeders are important components of aquatic ecosystems, often dominating the use of space and influencing patterns of material cycling between the water column and benthos. Biomechanical theory predicts that feeding by these consumers is governed by the flux (i.e., product of food concentration and velocity) of particulate material to their feeding appendages. We performed a laboratory flume experiment to test how feeding by larval black flies (Simulium vittatum Zett.) responds to independent manipulations of flow and food concentration. We quantified larval body posture, flick rate of the labral fans, and ingestion rate as a function of two concentrations of a baker's yeast/chalk suspension (0.96 and 4.44 mg l-1) and five water velocities (20, 30, 45, 60, and 90 cm s-1). Using analysis of covariance, we found that both flick rate and ingestion rate increased in a decelerating manner with increasing velocity, while fan height decreased linearly with increasing velocity. In contrast, food concentration had no effect on any aspect of feeding behavior. Thus, although both velocity and food concentration contribute to particle flux, our results indicate that the two were not substitutable under the range of conditions tested here.  相似文献   

17.
The nitrogen composition and sugar and auxin concentrations of callus induction medium were optimized in order to improve the regeneration of green plants from two elite oat cultivars, Aslak and Veli. For both cultivars, the production of green plantlets was doubled by optimization. However, the results obtained also clearly demonstrated that cultivars of the same species may differ drastically in their requirements for essential media components. Veli clearly required higher total amounts of nitrogen (67.8 mM) than Aslak (44.9 mM) but less maltose and 2,4-dichlorophenoxyacetic acid (28 g l-1 and 0.6 mg l-1) than Aslak (38 g l-1 and 2 mg l-1). This result indicates that the optimal production of green plantlets through embryogenesis requires that media be optimized for each cultivar separately.  相似文献   

18.
We investigated the growth and vertical flux of attached bacteria with floating sediment traps in the Hudson River Plume of the New York Bight during the spring diatom blooms. Traps were floated at the base of the mixed layer (ca. 10 m) for 1-day periods. After recovery, we measured bacterial abundance and rates of [methyl-3H]thymidine incorporation in the trap samples. The vertical flux of attached bacteria was estimated with a model formulated to distinguish between bacterial accumulation in traps due to in situ growth and that due to vertical flux. Attached bacterial flux ranged from 0.6 × 1011 to 2.0 × 1011 cells m−2 day−1, and attached bacterial settling rates of 0.1 to 1.0 m day−1 were observed during periods of vertical particulate organic carbon flux ranging from 254 to 1,267 mg of C m−2 day−1. In situ growth of bacteria in sediment traps was unimportant as a source of bacterial increase when compared with vertical flux during our study. The vertical flux of attached bacteria removed 3 to 67% of the total daily bacterial production from the water column. Particulate organic carbon is not significantly mineralized by attached bacteria during its descent to the sea floor in the plume area during this period, when water temperature and grazing rates are at their annual minima.  相似文献   

19.
The phytoplankton productivity and biomass of two large, freshwater Antarctic lakes (Vestfold Hills, eastern Antarctica) were investigated over a 12-month period. Crooked Lake was sampled at one site, while Lake Druzhby, a complex lake with two shallow and one deep basin, was subject to a more detailed investigation. Concentrations of chlorophyll a were usually below 1 µg l-1, indicating ultra-oligotrophic conditions. Despite periodic low nutrient levels, low temperatures (range 0.4-2.8°C) and periodic poor light climate, some degree of photosynthesis was measurable throughout the year, including the dark winter phase. Snow cover had a pronounced impact on the light climate of the water column and inhibited photosynthesis. Mean rates of carbon fixation in the 0- to 15-m water column varied between 0 and 38.47 µg C l-1 day-1 in Crooked Lake and 0.24 and 37.68 µg C l-1 day-1 in Lake Druzhby. There were significant differences in the seasonal patterns of primary production between the basins of Lake Druzhby. The shallow basins had highest productivity in August, whereas the deep basin had highest rates in summer. Chlorophyll specific rates of photosynthesis or assimilation numbers [µg C (chl. a)-1 h-1] varied between 0.05 and 44.9, and photosynthetic efficiency [µg C (chl. a)-1 h-1 µmol m-2 s-1] between 0.02 and 5.19. The data suggest that the phytoplankton of these lakes is adapted to low irradiance levels, low temperatures and nutrient limitation.  相似文献   

20.
Fluxes of diatoms in the Dona Paula Bay, west coast of India   总被引:2,自引:0,他引:2  
Sediment traps were deployed at a station in the Dona PaulaBay to collect sedimenting particles at weekly intervals fromNovember to May during 1995–1997. Sedimented particleswere analysed for total diatom flux, chlorophyll a (Chl a) andparticulate organic carbon (POC). The highest diatom flux wasrecorded in April–May for both the years. Fluxes of diatomsvaried from0.6 x 104 cells m–2 day–1 (November 1995)to 121.47 x 104 cells m–2 day–1 (December 1996).In all, 19 diatom genera were identified in the sedimented material.Navicula, Nitzschia, Pleurosigma, Licmophora, Coscinodiscus,Rhizosolenia and Surirella were the most abundant genera inthe sedimented material throughout the sampling period. Meanflux of POC and diatom carbon was 251 and 0.39 mg C m–2day–1, respectively. The diatom carbon accounted for 0.15%of the POC flux. Mass flux of diatoms showed significant negativecorrelation with the concentration of nitrate and phosphate.This suggests that the nutrient concentration played an importantrole in influencing the sedimentation of diatoms at this coastalstation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号