首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. Lines of White Leghorn chickens were developed by selection for high (HA) or low (LA) antibody response to sheep red blood cells (SRBC) and then backcrossed to provide individuals segregating for haplotypes B 13 and B 21 of the major histocompatibility complex (MHC) within each selected line. Although antibody response to SRBC was consistently higher in background genome HA than LA, there was a significant interaction between background genome and MHC haplotypes. The interaction resulted from higher antibody response in B13/B21 individuals of line HA and in B21/ B 21 individuals of line LA. Thus, response to SRBC was dependent on particular haplotype combinations present at the MHC as well as the background genome in which they were expressed.  相似文献   

2.
In Leghorn (laying) chickens, susceptibility to a number of infectious diseases is strongly associated with the major histocompatibility ( B ) complex. Nucleotide sequence data have been published for six class I ( B-F ) alleles and for class II ( B-Lβ ) alleles or isotypes from 17 Leghorn haplotypes. It is not known if classical B-L or B-F alleles in broilers are identical, at the sequence level, to any Leghorn alleles. This report describes molecular and immunogenetic characterization of two haplotypes from commercial broiler breeder chickens that were originally identified by serology as a single haplotype, but were differentiated serologically in the present work. The two haplotypes, designated B A4 and B A4variant, shared identical B-G restriction fragment length polymorphism patterns, but differed in one B-Lβ fragment that cosegregated with the serological B haplotype. Furthermore, the nucleotide sequences of the highly variable exons of an expressed B-LβII family gene and B-F gene from the two haplotypes were markedly different from each other. Both the B-LβII family and B-F gene sequences from the B A4 haplotype were identical to the sequences obtained from the reference B 21 haplotype in Leghorns; however, in the B A4 haplotype the B-Lβ 21 and B-F 21 alleles were in linkage with B-G alleles that were not G 21. The nucleotide sequences from B A4variant were unique among the reported chicken B-LβII family and B-F alleles.  相似文献   

3.
The major histocompatibility (B) complex of a distinct commercial pure White Leghorn chicken line was characterized using serological, biochemical and restriction fragment length polymorphism (RFLP) typing. Line B chickens displayed a high recombination frequency within the B complex. Three recombinant haplo-types were identified. The influence of these haplotypes was determined in relation to the haplotypes Bl9 and B21 on their resistance to Marek's disease (MD) in an experimental infection with the virus. Offspring of sires with a recombinant haplotype in combination with B19 or B21, and dams, which were homozygous B19/B19 or B21/B21 were infected. The B type of the offspring had a significant effect upon survival. Animals with B complex types B21/B21, B134/B21 and B234/B21 were relatively resistant to MD (24–32% mortality), whereas B19/B19 birds were highly susceptible (68% mortality). Animals with a recombinant halpotype B19r21 (B-G21, B-F19) were equally susceptible to MD as birds with the complete B19 haplotype. In contrast to earlier publications, resistance was not inherited as a dominant trait. Apparently, B19 was associated with a dominant susceptibility. The gene(s) associated with the B complex and involved in resistance to MD were localized within the B-F/B-L region. However, the association with a presumably non-coding subregion of B-G could not be excluded.  相似文献   

4.
5.
6.
Evidence for the importance of major histocompatibility complex (MHC) genotype in immunological fitness of chickens continues to accumulate. The MHC B haplotypes contribute resistance to Marek's and other diseases of economic importance. The Rfp-Y, a second cluster of MHC genes in the chicken, may also contribute to disease resistance. Nevertheless, the MHC B and Rfp-Y haplotypes segregating in broiler chickens are poorly documented. The Camperos, free-range broiler chickens developed in Argentina, provide an opportunity to evaluate MHC diversity in a genetically diverse broiler stock. Camperos are derived by cross-breeding parental stocks maintained essentially without selection since their founding. We analysed 51 DNA samples from the Camperos and their parental lines for MHC B and Rfp-Y variability by restriction fragment pattern (rfp) and SSCP typing methods for B-G, B-F (class Ia), B-Lbeta (class II) and Y-F (class Ib) diversity. We found evidence for 38 B-G genotypes. The Camperos B-G patterns were not shared with White Leghorn controls, nor were any of a limited number of Camperos B-G gene sequences identical to published B-G sequences. The SSCP assays provided evidence for the presence of at least 28 B-F and 29 B-Lbeta genotypes. When considered together B-F, B-L, and B-G patterns provide evidence for 40 Camperos B genotypes. We found even greater Rfp-Y diversity. The Rfp-Y class I-specific probe, 163/164f, revealed 44 different rfps among the 51 samples. We conclude that substantial MHC B and Rfp-Y diversity exists within broiler chickens that might be drawn upon in selecting for desirable immunological traits.  相似文献   

7.
Sublines of chickens differing in genotypes at the major histocompatibility complex (MHC) were developed from lines selected for high (HA) and low (LA) antibody response to sheep erythrocytes. To evaluate the influence of MHC genotypes in diverse background genomes on resistance to Marek's disease, chicks with MHC genotypes B13B13, B13B21 and B21B21 from both background genomes were exposed naturally commencing at 1 day of age. Individuals which died up to 120 days of age were autopsied to determine cause of death. Mortality due to Marek's disease was greater for HA than LA chickens and greater for males than females. Interactions of MHC genotypes with background genome and with sex suggest a complex picture of the influence of MHC genotypes. A heterozygous advantage for resistance to Marek's disease was noted, as would be predicted by genetic theory concerning maintenance of polymorphism at the MHC.  相似文献   

8.
Major histocompatiblity complex (MHC) class IV haplotypes were identified in a population of meat-type chickens by restriction fragment length polymorphism (RFLP) analysis. Fourteen different haplotypes were designated on the basis of restriction patterns obtained from Southern blots of PvuII- or BglII-digested DNA, hybridized with the MHC class IV cDNA probe bg32.1. Digestion with each restriction enzyme yielded the same level of polymorphism among individuals. For each haplotype, 4–10 restriction fragments ranging from 0–8 to 8 kb were observed. Such a designation of meat-type chicken MHC class IV haplotypes enables a rapid recognition of previously defined haplotypes, is readily adjustable to additional, newly found restriction patterns and could prove useful in practical breeding programmes.  相似文献   

9.
Two sets of backcross matings were performed to test for linkage between genes coding for the Ia-like antigens ("Ia") and the B erythrocyte antigens (Ea-B) of the chicken. Evidence is presented which indicates that the "Ia" antigens are determined by a single codominant locus and that the Ea-B and "Ia" loci are on the same chromosome. Failure to detect a single recombinant between the Ea-B and "Ia" loci out of 208 progeny suggests close linkage of the two genes with a map distance of up to about 2 centimorgans. The "Ia" genes are thus included in the B major histocompatibility complex of the chicken.  相似文献   

10.
A bi directional selection experiment was conducted to measure 5-day antibody titers to sheep erythrocytes in White Leghorn chickens. There was an immediate response to selection with significant differences between lines for the selected trait found in the S1 and all subsequent generations. Comparisons of S6, S7 and S8 generation females revealed differences between lines in disease resistance and in certain reproductive traits such as age at first egg, percentage hen-day egg production, percentage fertility and duration of fertility. The implications of these correlated responses are important to selection programs for general disease resistance.  相似文献   

11.
The injection of 6 x 10(9) sheep red blood cells (SRBC) to mice suppressed the delayed type hypersensitivity (DTH) in situ and activated spleen T cells which prevent sensitization of syngeneic recipients. Similar effect was obtained when suppressor cells induced in F1 hybrids were transferred to parental mice. Suppression was also reached in allogeneic strain combination if suppressor cells of donors and recipients shared the major histocompatibility complex (MHC). Studied performed with recombinant and mutant strains revealed that the prerequisite for interaction of DTH suppressors and effectors was the identity of K-region of MHC. Passive transfer of DTH to SRBC was also possible if donors and recipients were identical in K-region of MHC. It is believed that interaction between DTH suppressors and effectors is restricted by a region of MHC whose product takes part in antigen representation.  相似文献   

12.
P. Millot 《Animal genetics》1978,9(2):115-121
Among 11 lymphocyte factors defined in sheep, 9 are the products of multiple alleles at 2 closely linked loci: OLA-A and OLA-B. A tenth factor is the product of a gene at a third locus: OL-X probably on the same chromosome, but in this case very distant from OLA. The last factor is the product of a gene at a fourth locus: OL-Z, independent of OLA-A and B.  相似文献   

13.
Class II major histocompatibility complex genes of the sheep   总被引:2,自引:0,他引:2  
The class II genes of the sheep major histocompatibility complex (MHC) have been cloned from two unrelated heterozygous sheep into cosmid vectors. By restriction mapping and hybridization with a number of class II probes of human and mouse origin, the cloned genetic material has been assigned to seven distinct alpha genes, 10 distinct beta genes and 14 beta-related sequences. It was difficult to identify homologues of specific HLA class II genes because of a tendency for the ovine genes to cross-hybridize between HLA probes representing different loci. Such cross-hybridization was especially marked among the beta genes. While DQ and DR homologues have been tentatively identified by several criteria, no genes corresponding to DP have been identified. Cosmids containing class II alpha and beta genes have been transfected into mouse LTK- cells, and surface expression of a sheep class II molecule has been obtained.  相似文献   

14.
Chickens of a commercial pure White Leghorn line were typed for B-F and B-G by serological, biochemical and molecular biological methods. Amongst 287 typed animals of one particular line, three animals with recombinant haplotypes were identified. Compared to earlier reports this revealed a statistically significant (P < 0 –05), tenfold higher recombination frequency in this chicken line.  相似文献   

15.
Two sets of backcross matings were performed to test for linkage between genes coding for the Ia-like antigens (Ia) and the B erythrocyte antigens (Ea-B) of the chicken. Evidence is presented which indicates that the la antigens are determined by a single codominant locus and that theEa-B and Ia loci are on the same chromosome. Failure to detect a single recombinant between theEa-B and Ia loci out of 208 progeny suggests close linkage of the two genes with a map distance of up to about 2 centimorgans. The Ia genes are thus included in theB major histocompatibility complex of the chicken.  相似文献   

16.
Restriction fragment length polymorphism (RFLP) was used as a molecular genotyping approach to characterize differences in major histocompatibility complex class IV genes in meat-type chickens. A high level of polymorphism was observed following digestion with each of the two restriction endonucleases PvuII and BglII. Examination of DNA from 54 chickens revealed 23 polymorphic fragments. Application of RFLP techniques in the analysis of family groups should make possible the determination of B-G genotypes in the meat type chickens.  相似文献   

17.
18.
The genetic relationship between mixed leukocyte reaction (MLR), skin graft rejection, and some red blood cell antigens has been studied in a sibship of the toadXenopus laevis. MLR typing was achieved using blood lymphocytes. The graft experiments were performed at 17–19°C. Grafts exchanged between MLR identical sibs were rejected in 30.9±5.1 days, grafts exchanged between MLR different sibs were rejected in 20.4±2.4 days when animals differed at one MLR haplotype, and in 18.6±1.9 days when they differed at two MLR haplotypes. Immunizations and absorptions following the MLR typing produced agglutinating antisera that recognize red blood cell antigens segregating with MLR haplotypes. The results parallel those obtained in various mammalian and avian species and suggest that the homology of the major histocompatibility complex (MHC), described in higher vertebrates, can be extended to amphibians.  相似文献   

19.

Background

The present study hypothesized that GH-AluI and IGF-I-SnabI polymorphisms do change the metabolic/endocrine profiles in Holstein cows during the transition period, which in turn are associated with productive and reproductive parameters.

Methods

Holstein cows (Farm 1, primiparous cows, n = 110, and Farm 2, multiparous cows, n = 76) under grazing conditions were selected and GH and IGF-I genotypes were determined. Blood samples for metabolic/endocrine determinations were taken during the transition period and early lactation in both farms. Data was analyzed by farm using a repeated measures analyses including GH and IGF-I genotypes, days and interactions as fixed effects, sire and cow as random effects and calving date as covariate.

Results and Discussion

Frequencies of GH and IGF-I alleles were L:0.84, V:0.16 and A:0.60, B:0.40, respectively. The GH genotype was not associated with productive or reproductive variables, but interaction with days affected FCM yield in multiparous (farm 2) cows (LL yielded more than LV cows) in early lactation. The GH genotype affected NEFA and IGF-I concentrations in farm 1 (LV had higher NEFA and lower IGF-I than LL cows) suggesting a better energy status of LL cows. There was no effect of IGF-I genotype on productive variables, but a trend was found for FCM in farm 2 (AB cows yielded more than AA cows). IGF-I genotype affected calving first service interval in farm 1, and the interaction with days tended to affect FCM yield (AB cows had a shorter interval and yielded more FCM than BB cows). IGF-I genotype affected BHB, NEFA, and insulin concentrations in farm 1: primiparous BB cows had lower NEFA and BHB and higher insulin concentrations. In farm 2, there was no effect of IGF-I genotype, but there was an interaction with days on IGF-I concentration, suggesting a greater uncoupling somatropic axis in AB and BB than AA cows, being in accordance with greater FCM yield in AB cows.

Conclusion

The GH and IGF-I genotypes had no substantial effect on productive parameters, although IGF-I genotype affected calving-first service interval in primiparous cows. Besides, these genotypes may modify the endocrine/metabolic profiles of the transition dairy cow under grazing conditions.  相似文献   

20.
The avian eggshell is a composite structure of organic matrix and mineral (calcium carbonate) that is rapidly and sequentially fabricated in the oviduct in <24 hr. The eggshell is an excellent vehicle for the study of biomineralization processes and the role of the organic matrix in the mineral-matrix composite. The organic matrix components of eggshells from White Leghorn chickens (Gallus gallus) were examined by transmission electron microscopy (TEM) and optical microscopy. The mineral phase was analyzed by TEM, scanning electron microscopy (SEM), X-ray compositional microanalysis, and electron diffraction. Ultrastructural examination of the matrices within the calcified eggshell reveals a complex architecture that differs within each of the major zones of the eggshell: the shell membranes, the mammillary zone, the palisade region, and the cuticle. The mammillary layer consists of the calcium reserve assembly (CRA) and crown region, each with a unique substructure. TEM images show that the matrix of the CRA consists of a dense, flocculent material partially embedded within the outer shell membrane (a mostly noncalcified region of the shell). The mantle of the collagen fibers of the shell membranes is rich in polyanions (cuprolinic blue-positive), as is the CRA matrix. The CRA is capped by a centrally located calcium reserve body sac (CRB sac) that contains numerous 300–400 nm, electron-dense, spherical vesicles. Directly above the CRB sac is a zone of matrix consisting of stacks of interconnected vesicles (similar in morphology to CRA vesicles) that are interspersed with a granular material. The palisade region, the largest of the mineralized zones, contains hollow vesicles ∼450 nm (s.d. = 75 nm) in diameter, with a crescent-shaped, electron-dense fringe. An interconnecting matrix material is also found between the vesicles in the palisades region. The cuticle is composed of two layers, a mineralized inner layer and an outer layer consisting of only organic matrix. The bulk of the mineral within the eggshell is calcite, with small amounts of needlelike hydroxyapatite in the inner cuticle and occasionally, vaterite micro crystals found at the base of the palisade (cone) region. The well-crystallized calcite crystals within the palisade are columnar, typically ∼20 μm wide by 100–200 μm long; aside from numerous entrapped vesicles and occasional dislocations, they are relatively defect-free. The bulk of the matrix found in the palisade and crown regions are thought to be residual components of the rapid mineralization process. The unique matrix structure within the CRB corresponds to the region of preferentially solubilized calcite used by the developing embryo and the hydroxyapatite found in the inner cuticle may play a role in the cessation of mineral growth. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号