首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J Chen  Y Zhang  G Akk  S Sine    A Auerbach 《Biophysical journal》1995,69(3):849-859
Affinity labeling and mutagenesis studies have demonstrated that the conserved tyrosine Y190 of the acetylcholine receptor (AChR) alpha-subunit is a key determinant of the agonist binding site. Here we describe the binding and gating kinetics of embryonic mouse AChRs with mutations at Y190. In Y190F the dissociation constant for ACh binding to closed channels was reduced approximately 35-fold at the first binding site and only approximately 2-fold at the second site. At both binding sites the association and dissociation rate constants were decreased by the mutation. Compared with wildtype AChRs, doubly-liganded alpha Y190F receptors open 400 times more slowly but close only 2 times more rapidly. Considering the overall activation reaction (vacant-closed to fully occupied-open), there is an increase of approximately 6.4 kcal/mol caused by the Y-to-F mutation, of which at least 2.1 and 0.3 kcal/mol comes from altered agonist binding to the first and second binding sites, respectively. The closing rate constant of alpha Y190F receptors was the same with ACh, carbamoylcholine, or tetramethylammonium as the agonist. This rate constant was approximately 3 times faster in ACh-activated S, W, and T mutants. The equilibrium dissociation constant for channel block by ACh was approximately 2-fold lower in alpha Y190F receptors compared with in wildtype receptors, suggesting that there are changes in the pore region of the receptor as a consequence of the mutation. The activation reaction is discussed with regard to energy provided by agonist-receptor binding contacts, and by the intrinsic folding energy of the receptor.  相似文献   

2.
A number of studies have demonstrated that a major portion of the ligand binding site of the Torpedo nicotinic acetylcholine receptor is near cysteines 192 and 193 of the alpha subunit. The role of conserved tyrosine and aspartate residues within this region in ligand binding and receptor activation was investigated using a combination of site-directed mutagenesis and expression in Xenopus oocytes. Wild-type receptors are half-maximally activated (K1/2) by 20 microM acetylcholine with a Hill coefficient, n, of 1.9. Substitution of alpha Y190 and alpha Y198 with phenylalanines (alpha Y190F, alpha Y198F) or alpha D200 with asparagine (alpha D200N) shifts the K1/2 to 408, 117, and 75 microM, respectively, with no effect on the Hill coefficient. To further study the effects of these mutations on activation, the responses of the receptors to the partial agonists phenyltrimethylammonium (PTMA) and tetramethylammonium (TMA) were examined. Wild-type receptors are half-maximally activated by 73 microM PTMA and 2 mM TMA. In contrast, alpha Y190F, alpha Y198F, and alpha D200N receptors are not activated by PTMA and TMA by concentrations of up to 500 microM or 5 mM, respectively. However, PTMA and TMA do act as competitive antagonists of the mutant receptors, an indication that the binding of these compounds is not abolished by these mutations. Comparison of the the Ki values for TMA and PTMA inhibition with the K 1/2 values for TMA and PTMA activation of wild-type receptors indicates that the affinities of these compounds are similar in wild-type and mutant receptors. Therefore, alpha Y190F, alpha Y198F, and alpha D200N mutations do not significantly alter the affinity of the ligand binding site; rather, these mutations appear to interfere with the coupling of ligand binding to channel opening.  相似文献   

3.
By defining functional defects in a congenital myasthenic syndrome (CMS), we show that two mutant residues, located in a binding site region of the acetylcholine receptor (AChR) epsilon subunit, exert opposite effects on ACh binding and suppress channel gating. Single channel kinetic analysis reveals that the first mutation, epsilon N182Y, increases ACh affinity for receptors in the resting closed state, which promotes sequential occupancy of the binding sites and discloses rate constants for ACh occupancy of the nonmutant alphadelta site. Studies of the analogous mutation in the delta subunit, deltaN187Y, disclose rate constants for ACh occupancy of the nonmutant alpha epsilon site. The second CMS mutation, epsilon D175N, reduces ACh affinity for receptors in the resting closed state; occupancy of the mutant site still promotes gating because a large difference in affinity is maintained between closed and open states. epsilon D175N impairs overall gating, however, through an effect independent of ACh occupancy. When mapped on a structural model of the AChR binding site, epsilon N182Y localizes to the interface with the alpha subunit, and epsilon D175 to the entrance of the ACh binding cavity. Both epsilon N182Y and epsilon D175 show state specificity in affecting closed relative to desensitized state affinities, suggesting that the protein chain harboring epsilon N182 and epsilon D175 rearranges in the course of receptor desensitization. The overall results show that key residues at the ACh binding site differentially stabilize the agonist bound to closed, open and desensitized states, and provide a set point for gating of the channel.  相似文献   

4.
The muscle acetylcholine receptor (AChR) has served as a prototype for understanding allosteric mechanisms of neurotransmitter-gated ion channels. The phenomenon of cooperative agonist binding is described by the model of Monod et al. (Monod, J., Wyman, J., and Changeux, J. P. (1965) J. Mol. Biol. 12, 88-118; MWC model), which requires concerted switching of the two binding sites between low and high affinity states. The present study examines binding of acetylcholine (ACh) and epibatidine, agonists with opposite selectivity for the two binding sites of mouse muscle AChRs. We expressed either fetal or adult AChRs in 293 HEK cells and measured agonist binding by competition against the initial rate of 125I-alpha-bungarotoxin binding. We fit predictions of the MWC model to epibatidine and ACh binding data simultaneously, taking as constants previously determined parameters for agonist binding and channel gating steps, and varying the agonist-independent parameters. We find that the MWC model describes the apparent dissociation constants for both agonists but predicts Hill coefficients that are far too steep. An Uncoupled model, which relaxes the requirement of concerted state transitions, accurately describes binding of both ACh and epibatidine and provides parameters for agonist-independent steps consistent with known aspects of AChR function.  相似文献   

5.
Kinetics of unliganded acetylcholine receptor channel gating.   总被引:10,自引:1,他引:9       下载免费PDF全文
Open- and closed-state lifetimes of unliganded acetylcholine receptor channel activity were analyzed by the method of likelihood maximazation. For both open times and closed times, the best-fitting density is most often a sum of two exponentials. These multiple open states cannot depend on the number of receptor binding sites occupied since they are observed in the absence of ligand. The rate of spontaneous opening and the faster decay constant of closing increased as the membrane was hyperpolarized. The voltage dependence of the rate of spontaneous opening is stronger than that for curare-liganded channels. Evidence that the acetylcholine receptor channel can open spontaneously in the absence of ligand has been presented previously (Sanchez et al, 1983; Brehm et al, 1984; Jackson, 1984). To add to this evidence, alpha-bungarotoxin was added to the patch electrode, causing the frequency of openings to decay with time. The rate constant determined from this decay is similar to rate constants reported for the binding of iodinated alpha-bungarotoxin to the acetylcholine receptor. The frequency of unliganded channel opening has been estimated as 2 X 10(-3) s-1 per receptor. A comparison of carbamylcholine-liganded and spontaneous gating transition rates suggests that ligand binding increases the rate of opening by a factor of 1.4 X 10(7). Carbamylcholine binding increases the mean open time by a factor of 5. Thus, a cholinergic agonist activates the acetylcholine receptor by destabilizing the closed state. The liganded and unliganded channel gating rates were used to analyze the energetics of ligand activation of the acetylcholine receptor channel, and to relate the open channel dissociation constant to the closed channel dissociation constant.  相似文献   

6.
Summary and Conclusions Work over the past ten years has greatly increased our understanding of both the structure and function of the muscle nicotinic acetylcholine receptor. There is a strongly supported general picture of how the receptor functions: agonist binds rapidly to sites of low affinity and channel opening occurs at a rate comparable to the agonist dissociation rate. Channel closing is slow, so the channel has a high probability of being open if both agonist-binding sites are occupied by ACh. Results of expression studies have shown that each subunit can influence AChR activation and have given a structural basis for the major physiological change known for muscle AChR, the developmental change in AChR activation. These general statements notwithstanding, there are still major areas of uncertainty which limit our understanding. We have emphasized these areas of uncertainty in this review, to indicate what needs to be done.First, the quantitative estimates of rate constants are not as strongly supported as they should be. The major reasons are twofold—uncertainties about the interpretation of components in the kinetic data and difficulties of resolving brief events. As a result, any inferences about the functional consequences of structural alterations must remain tenuous.Second, the functional behavior of individual AChRs is not as well understood as it should be. The kinetic behavior of an individual receptor clearly can be complex (section II). In addition, there is evidence that superimposed on this complexity there may be stable and kinetically distinguishable populations of receptors (section III). Until the basis for the kinetically defined populations is clarified, kinetic parameters for receptors of defined structure cannot be unambiguously obtained.Finally, it is not surprising that the studies of AChR of altered structure have not given definitive results. Two reasons should be apparent from the preceding points: there is not a fully supported approach for kinetic analysis, and the normal population may not be clearly defined. An additional complication is also emerging, in that the available data support the idea that specific residues distributed over all subunits may influence AChR activation. This possibility renders the task of analysis that much more difficult.The muscle nicotinic AChR has served as a prototype for the family of transmitter-gated membrane channels, which includes the muscle and neuronal nicotinic receptors, the GABAA, the glycine and possibly the non-NMDA excitatory amino acid receptor (Stroud et al., 1990). It is interesting to note that the functional properties of the GABAA receptor, probably the best-studied of the other members of the family are rather similar. In particular, opentime and burst durations show multiple components interpreted as reflecting openings of singly and doubly liganded receptors (Mathers & Wang, 1988; Macdonald et al., 1989), the distribution of gaps indicates a relatively complex gating scheme (Twyman et al., 1990; Weiss & Magleby, 1989), and multiple kinetic modes are likely to exist (Newland et al., 1991). The situation with regards to the effects of GABAA receptor subunit stoichiometry is more complex than for muscle AChR (e.g., Luddens & Wisden, 1991), perhaps similar to that found for neuronal nicotinic AChR (Papke et al., 1989; Luetje et al., 1990; Luetje & Patrick, 1991). Overall, it appears that the unresolved questions about the muscle nicotinic AChR are not indications that this is an exceptionally complicated transmitter-gated channel. Rather, it appears to be a relatively straightforward member of the family, and the lessons we learn from studying it are likely to be directly applicable to other receptors.We thank many friends for discussion, including Tony Auerbach, Paul Brehm, Jim Dilger, Meyer Jackson, and Chuck Stevens who told us about data before publication. Research in the authors' laboratories is supported by grants from the NIH (CL and JHS) and the AHA (CL).  相似文献   

7.
Identification of all residues involved in the recognition and binding of cholinergic ligands (e.g. agonists, competitive antagonists, and noncompetitive agonists) is a primary objective to understand which structural components are related to the physiological function of the nicotinic acetylcholine receptor (AChR). The picture for the localization of the agonist/competitive antagonist binding sites is now clearer in the light of newer and better experimental evidence. These sites are located mainly on both alpha subunits in a pocket approximately 30-35 A above the surface membrane. Since both alpha subunits are identical, the observed high and low affinity for different ligands on the receptor is conditioned by the interaction of the alpha subunit with other non-alpha subunits. This molecular interaction takes place at the interface formed by the different subunits. For example, the high-affinity acetylcholine (ACh) binding site of the muscle-type AChR is located on the alphadelta subunit interface, whereas the low-affinity ACh binding site is located on the alphagamma subunit interface. Regarding homomeric AChRs (e.g. alpha7, alpha8, and alpha9), up to five binding sites may be located on the alphaalpha subunit interfaces. From the point of view of subunit arrangement, the gamma subunit is in between both alpha subunits and the delta subunit follows the alpha aligned in a clockwise manner from the gamma. Although some competitive antagonists such as lophotoxin and alpha-bungarotoxin bind to the same high- and low-affinity sites as ACh, other cholinergic drugs may bind with opposite specificity. For instance, the location of the high- and the low-affinity binding site for curare-related drugs as well as for agonists such as the alkaloid nicotine and the potent analgesic epibatidine (only when the AChR is in the desensitized state) is determined by the alphagamma and the alphadelta subunit interface, respectively. The case of alpha-conotoxins (alpha-CoTxs) is unique since each alpha-CoTx from different species is recognized by a specific AChR type. In addition, the specificity of alpha-CoTxs for each subunit interface is species-dependent.In general terms we may state that both alpha subunits carry the principal component for the agonist/competitive antagonist binding sites, whereas the non-alpha subunits bear the complementary component. Concerning homomeric AChRs, both the principal and the complementary component exist on the alpha subunit. The principal component on the muscle-type AChR involves three loops-forming binding domains (loops A-C). Loop A (from mouse sequence) is mainly formed by residue Y(93), loop B is molded by amino acids W(149), Y(152), and probably G(153), while loop C is shaped by residues Y(190), C(192), C(193), and Y(198). The complementary component corresponding to each non-alpha subunit probably contributes with at least four loops. More specifically, the loops at the gamma subunit are: loop D which is formed by residue K(34), loop E that is designed by W(55) and E(57), loop F which is built by a stretch of amino acids comprising L(109), S(111), C(115), I(116), and Y(117), and finally loop G that is shaped by F(172) and by the negatively-charged amino acids D(174) and E(183). The complementary component on the delta subunit, which corresponds to the high-affinity ACh binding site, is formed by homologous loops. Regarding alpha-neurotoxins, several snake and alpha-CoTxs bear specific residues that are energetically coupled with their corresponding pairs on the AChR binding site. The principal component for snake alpha-neurotoxins is located on the residue sequence alpha1W(184)-D(200), which includes loop C. In addition, amino acid sequence 55-74 from the alpha1 subunit (which includes loop E), and residues gammaL(119) (close to loop F) and gammaE(176) (close to loop G) at the low-affinity binding site, or deltaL(121) (close to the homologous region of loop G) at the high-affinity binding site, are i  相似文献   

8.
Levamisole is an anthelmintic agent that exerts its therapeutic effect by acting as a full agonist of the nicotinic receptor (AChR) of nematode muscle. Its action at the mammalian muscle AChR has not been elucidated to date despite its wide use as an anthelmintic in humans and cattle. By single channel and macroscopic current recordings, we investigated the interaction of levamisole with the mammalian muscle AChR. Levamisole activates mammalian AChRs. However, single channel openings are briefer than those activated by acetylcholine (ACh) and do not appear in clusters at high concentrations. The peak current induced by levamisole is about 3% that activated by ACh. Thus, the anthelmintic acts as a weak agonist of the mammalian AChR. Levamisole also produces open channel blockade of the AChR. The apparent affinity for block (190 microm at -70 mV) is similar to that of the nematode AChR, suggesting that differences in channel activation kinetics govern the different sensitivity of nematode and mammalian muscle to anthelmintics. To identify the structural basis of this different sensitivity, we performed mutagenesis targeting residues in the alpha subunit that differ between vertebrates and nematodes. The replacement of the conserved alphaGly-153 with the homologous glutamic acid of nematode AChR significantly increases the efficacy of levamisole to activate channels. Channel activity takes place in clusters having two different kinetic modes. The kinetics of the high open probability mode are almost identical when the agonist is ACh or levamisole. It is concluded that alphaGly-153 is involved in the low efficacy of levamisole to activate mammalian muscle AChRs.  相似文献   

9.
New Views of Multi-Ion Channels   总被引:1,自引:0,他引:1       下载免费PDF全文
The rate constants of acetylcholine receptor channels (AChR) desensitization and recovery were estimated from the durations and frequencies of clusters of single-channel currents. Diliganded-open AChR desensitize much faster than either unliganded- or diliganded-closed AChR, which indicates that the desensitization rate constant depends on the status of the activation gate rather than the occupancy of the transmitter binding sites. The desensitization rate constant does not change with the nature of the agonist, the membrane potential, the species of permeant cation, channel block by ACh, the subunit composition (ε or γ), or several mutations that are near the transmitter binding sites. The results are discussed in terms of cyclic models of AChR activation, desensitization, and recovery. In particular, a mechanism by which activation and desensitization are mediated by two distinct, but interrelated, gates in the ion permeation pathway is proposed.  相似文献   

10.
The acetylcholine receptor (AChR) from vertebrate skeletal muscle is a pentamer composed of two ligand-binding alpha-subunits and one beta-, gamma-, and delta-subunit. To examine the functional roles of the non-alpha-subunits, we have expressed, in stable cell lines, AChRs lacking either a gamma- or a delta-subunit. Most previous work has examined how these changes in subunit composition affect single channel properties. Here, we take advantage of the stable expression system to produce large amounts of AChR and, for the first time, examine ligand binding to altered AChRs on intact cells. The changes in subunit composition affect both ligand affinity and cooperativity of the receptor, suggesting important roles for the gamma- and delta-subunits, both in shaping the ligand binding site and maintaining cooperative interactions between alpha-subunits.  相似文献   

11.
Three aromatic amino acids, Tyr92, Trp148 and Tyr187 belonging to three separate domains of the alpha 7-subunit of neuronal nicotinic acetylcholine receptor were mutated to phenylalanine, and the electrophysiological response of the resulting mutant receptors analyzed in the Xenopus oocyte expression system. All mutations significantly decreased the apparent affinities for acetylcholine and nicotine, and to a lesser extent, those for the competitive antagonists dihydro-beta-erythroidine and alpha-bungarotoxin. Other properties investigated, such as the voltage dependency of the ion response as well as its sensitivity to the open channel blocker QX222, were not significantly changed, indicating that the mutations affected selectively the recognition of cholinergic ligands by the receptor protein. The maximal rates for the rapid desensitization process were slightly modified, suggesting that the contribution of Tyr92, Trp148 and Tyr187 to the binding area might differ in the various conformations of the nicotinic receptor. Other mutations at nearby positions (S94N, W153F, G151D and G82E) did not affect the properties of the electrophysiological response. These data point to the functional significance of Tyr92, Trp148 and Tyr187 in the binding of cholinergic ligands and ion channel activation of the nicotinic receptor, thus supporting a multiple loop model [(1990) J. Biol. Chem. 265, 10430-10437] for the ligand binding area.  相似文献   

12.
We describe the kinetic consequences of the mutation N217K in the M1 domain of the acetylcholine receptor (AChR) α subunit that causes a slow channel congenital myasthenic syndrome (SCCMS). We previously showed that receptors containing αN217K expressed in 293 HEK cells open in prolonged activation episodes strikingly similar to those observed at the SCCMS end plates. Here we use single channel kinetic analysis to show that the prolonged activation episodes result primarily from slowing of the rate of acetylcholine (ACh) dissociation from the binding site. Rate constants for channel opening and closing are also slowed but to much smaller extents. The rate constants derived from kinetic analysis also describe the concentration dependence of receptor activation, revealing a 20-fold shift in the EC50 to lower agonist concentrations for αN217K. The apparent affinity of ACh binding, measured by competition against the rate of 125I-α-bungarotoxin binding, is also enhanced 20-fold by αN217K. Both the slowing of ACh dissociation and enhanced apparent affinity are specific to the lysine substitution, as the glutamine and glutamate substitutions have no effect. Substituting lysine for the equivalent asparagine in the β, ε, or δ subunits does not affect the kinetics of receptor activation or apparent agonist affinity. The results show that a mutation in the amino-terminal portion of the M1 domain produces a localized perturbation that stabilizes agonist bound to the resting state of the AChR.  相似文献   

13.
Kapur A  Davies M  Dryden WF  Dunn SM 《Biochemistry》2006,45(34):10337-10343
Suberyldicholine, a bisquaternary compound, is a potent nicotinic acetylcholine receptor agonist. Previously, we suggested that at least some of the unusual binding properties of this ligand may be a consequence of its ability to cross-link two binding "subsites" within each of the high-affinity agonist binding domains [Dunn, S. M. J., and Raftery, M. A. (1997) Biochemistry 36, 3846-3853]. Tryptophan 86 of the alpha subunit has previously been implicated in the binding of agonist to this receptor. However, on the basis of the crystal structure of a homologous acetylcholine binding protein, this residue is predicted to lie 15-20 A from the high-affinity site, i.e., a distance that approximates the interonium distance of suberyldicholine. Tryptophan 86 was mutated to either an alanine or a phenylalanine, and the mutated subunit was coexpressed with wild-type beta, gamma, and delta subunits in Xenopus oocytes. Although the alanine mutation resulted in a loss of receptor expression, the alphaW86F mutant receptor was expressed on the oocyte surface, albeit with a much reduced efficiency. Acetylcholine-evoked currents of the alphaW86F receptor were not significantly different from those of the wild type with respect to the concentration dependence of channel activation, receptor desensitization, or d-tubocurarine inhibition. In contrast, the EC(50) for suberyldicholine-mediated activation of the alphaW86F receptor was increased by approximately 500-fold. Furthermore, suberyldicholine-evoked currents in the mutant receptor did not desensitize and were insensitive to block by d-tubocurarine. Thus, tryptophan 86 of the Torpedo receptor alpha subunit may be part of a subsite for recognition of suberyldicholine and other bisquaternary ligands.  相似文献   

14.
Abstract: The nicotinic acetylcholine receptor (AChR) exhibits at least four different conformational states varying in affinity for agonists such as acetylcholine (ACh). Photoaffinity labeling has been previously used to elucidate the topography of the AChR. However, to date, the photosensitive probes used to explore the cholinergic binding site photolabeled only closed or desensitized states of the receptor. To identify the structural modifications occurring at the ACh binding site on allosteric transition associated with receptor activation, we have investigated novel photoactivatable 4-diazocyclohexa-2,5-dienone derivatives as putative cholinergic agonists. Such compounds are fairly stable in the dark and generate highly reactive carbenic species on irradiation. In binding experiments using AChRs from Torpedo marmorata, these ligands had affinities for the ACh binding site in the micromolar range and did not interact with the noncompetitive blocker site (greater than millimolar affinity). Irreversible photoinactivation of ACh binding sites was obtained with the ligand 1b (up to 42% at 500 µM) in a protectable manner. In patch-clamp studies, 1b was shown to be a functional agonist of peripheral AChR in TE 671 cells, with the interesting property of exhibiting no or very little desensitization even at high concentrations.  相似文献   

15.
S J Tzartos  C Valcana  R Kouvatsou    A Kokla 《The EMBO journal》1993,12(13):5141-5149
Tyrosine phosphorylation of the nicotinic acetylcholine receptor (AChR) seems to be involved in AChR desensitization and localization on the postsynaptic membrane. This study reveals a probable function of the single known beta subunit phosphorylation site (beta Tyr355) and provides suitable tools for its study. The epitopes for 15 monoclonal antibodies (mAbs) against the cytoplasmic side of the AChR beta subunit were precisely mapped using > 100 synthetic peptides attached on polyethylene rods. Eleven mAbs bound to a very immunogenic cytoplasmic epitope (VICE-beta) on Torpedo beta 352-359, which contains the beta Tyr355, and to the corresponding sequence of human AChR. The contribution of each VICE-beta residue to mAb binding was then studied by peptide analogues having single residue substitutions. Overall, each of the residues beta 354-359, including beta Tyr355, proved critical for mAb binding. Two of our four mAbs known to block the ion channel were found to bind at (mAb148) or close (mAb10) to VICE-beta. Tyrosine phosphorylation of Torpedo AChR by endogenous kinase(s) selectively reduced binding of some VICE-beta mAbs, including the channel blocking mAb148. We conclude that VICE-beta probably plays a key role in AChR function. Elucidation of this role should be facilitated by the identified mAb tools.  相似文献   

16.
We report the isolation and sequence of a cDNA clone that encodes a locust (Schistocerca gregaria) nervous system nicotinic acetylcholine receptor (AChR) subunit (alpha L1). The calculated molecular weight of the unglycosylated polypeptide, which contains in the proposed extracellular domain two adjacent cysteine residues which are characteristic of alpha (ligand binding) subunits, is 60,641 daltons. Injection into Xenopus oocytes, of RNA synthesized from this clone in vitro, results in expression of functional nicotinic receptors in the oocyte membrane. In these, nicotine opens a cation channel; the receptors are blocked by both alpha-bungarotoxin (alpha-Bgt) and kappa-bungarotoxin (kappa-Bgt). Reversible block of the expressed insect AChR by mecamylamine, d-tubocurarine, tetraethylammonium, bicuculline and strychnine has also been observed. These data are entirely consistent with previously reported electrophysiological studies on in vivo insect nicotinic receptors and also with biochemical studies on an alpha-Bgt affinity purified locust AChR. Thus, a functional receptor exhibiting the characteristic pharmacology of an in vivo insect nicotinic AChR can be expressed in Xenopus oocytes by injection with a single subunit RNA.  相似文献   

17.
18.
In the nicotinic acetylcholine receptors (AChRs), the sequence segment surrounding two invariant vicinal cysteinyl residues at positions 192 and 193 of the alpha subunit contains important structural component(s) of the binding site for acetylcholine and high molecular weight cholinergic antagonists, like snake alpha-neurotoxins. At least a second sequence region contributes to the formation of the cholinergic site. Studying the binding of alpha-bungarotoxin and three different monoclonal antibodies, able to compete with alpha-neurotoxins and cholinergic ligands, to a panel of synthetic peptides as representative structural elements of the AChR from Torpedo, we recently identified the sequence segments alpha 181-200 and alpha 55-74 as contributing to form the cholinergic site (Conti-Tronconi et al., 1990). As a first attempt to elucidate the structural requirements for ligand binding to the subsite formed by the sequence alpha 181-200, we have now studied the binding of alpha-bungarotoxin and of antibody WF6 to the synthetic peptide alpha 181-200, and to a panel of peptide analogues differing from the parental sequence alpha 181-200 by substitution of a single amino acid residue. CD spectral analysis of the synthetic peptide analogues indicated that they all have comparable structures in solution, and they can therefore be used to analyze the influence of single amino acid residues on ligand binding. Distinct clusters of amino acid residues, discontinuously positioned along the sequence 181-200, seem to serve as attachment points for the two ligands studied, and the residues necessary for binding of alpha-bungarotoxin are different from those crucial for binding of antibody WF6. In particular, residues at positions 188-190 (VYY) and 192-194 (CCP) were necessary for binding of alpha-bungarotoxin, while residues W187, T191, and Y198 and the three residues at positions 193-195 (CPD) were necessary for binding of WF6. Comparison of the CD spectra of the toxin/peptide complexes, and those obtained for the same peptides and alpha-bungarotoxin in solution, indicates that structural changes of the ligand(s) occur upon binding, with a net increase of the beta-structure component. The cholinergic binding site is therefore a complex surface area, formed by discontinuous clusters of amino acid residues from different sequence regions. Such complex structural arrangement is similar to the "discontinuous epitopes" observed by X-ray diffraction studies of antibody/antigen complexes [reviewed in Davies et al. (1988)]. Within this relatively large structure, cholinergic ligands bind with multiple points of attachment, and ligand-specific patterns of the attachment points exist.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
20.
L Li  M Schuchard  A Palma  L Pradier  M G McNamee 《Biochemistry》1990,29(23):5428-5436
Previous chemical modification studies of the acetylcholine receptor [Yee, A.S., Corey, D.E., & McNamee, M.G. (1986) Biochemistry 25, 2110-2119] were extended by using fluorescent N-pyrenylmaleimide to alkylate purified Torpedo californica nicotinic acetylcholine receptor (AChR). Peptide sequencing of the tryptic fragments of the labeled AChR gamma subunit identified cysteines 416, 420, and 451 as the modified residues. The functional role of Cys-451 in the M4 transmembrane domain of the AChR gamma subunit was further investigated by studying the functional consequences of the site-specific mutation of this cysteine to either serine or tryptophan by using AChR mRNAs injected into Xenopus laevis oocytes. Both mutants displayed about 50% reduction in the normalized channel activity of the receptor measured as the ACh-induced conductance per femtomole of surface alpha-bungarotoxin binding sites. However, the mutations did not change other AChR functional properties such as agonist binding ability, the slow phase of desensitization, and blockade by competitive and noncompetitive antagonists. The significant reduction in AChR ion channel activity associated with the above point mutations, especially the simple change of the -SH group on Cys-451 to the -OH group, suggests that this thiol group in the M4 helix of gamma subunit may play an important role in AChR ion channel function. Previous site-directed mutations of the Cys-416 and -420 residues showed a decreased response when both of these residues were changed to phenylalanine, but not when they were changed to serine [Pradier, L., Yee, A.S., & McNamee, M.G. (1989) Biochemistry 28, 6562-6571].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号