首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Streptomycetes grow by cell wall extension at hyphal tips. The molecular basis for such polar growth in prokaryotes is largely unknown. It is reported here that DivIVASC, the Streptomyces coelicolor homologue of the Bacillus subtilis protein DivIVA, is essential and directly involved in hyphal tip growth and morphogenesis. A DivIVASC-EGFP hybrid was distinctively localized to hyphal tips and lateral branches. Reduction of divIVASC expression to about 10% of the normal level produced a phenotype strikingly similar to that of many tip growth mutants in fungi, including irregular curly hyphae and apical branching. Overexpression of the gene dramatically perturbed determination of cell shape at the growing tips. Furthermore, staining of nascent peptidoglycan with a fluorescent vancomycin conjugate revealed that induction of overexpression in normal hyphae disturbed tip growth, and gave rise to several new sites of cell wall assembly, effectively causing hyperbranching. The results show that DivIVASC is a novel bacterial morphogene, and it is localized at or very close to the apical sites of peptidoglycan assembly in Streptomyces hyphae.  相似文献   

2.
Prior to bacterial cell division, the ATP-dependent polymerization of the cytoskeletal protein, ParA, positions the newly replicated origin-proximal region of the chromosome by interacting with ParB complexes assembled on parS sites located close to the origin. During the formation of unigenomic spores from multi-genomic aerial hyphae compartments of Streptomyces coelicolor, ParA is developmentally triggered to form filaments along the hyphae; this promotes the accurate and synchronized segregation of tens of chromosomes into prespore compartments. Here, we show that in addition to being a segregation protein, ParA also interacts with the polarity protein, Scy, which is a component of the tip-organizing centre that controls tip growth. Scy recruits ParA to the hyphal tips and regulates ParA polymerization. These results are supported by the phenotype of a strain with a mutant form of ParA that uncouples ParA polymerization from Scy. We suggest that the ParA–Scy interaction coordinates the transition from hyphal elongation to sporulation.  相似文献   

3.
Lipid II flippases play an essential role in cell growth and the maintenance of cell shape in many rod‐shaped bacteria. The putative lipid II flippase RodA is an integral membrane protein and member of the SEDS (shape, elongation, division and sporulation) protein family. In contrast to its homologues in Escherichia coli and Bacillus subtilis little is known about the role of RodA in actinobacteria. In this study, we describe the localization and function of RodA in Corynebacterium glutamicum, a rod‐shaped, apically growing actinobacterium. RodA‐GFP localizes exclusively at the cell poles. Surprisingly, time‐lapse microscopy revealed that apical cell growth is sustained in a rodA deletion strain. However, growth rates and antibiotic susceptibility are altered. In the absence of RodA, it appears that apical growth is driven by lateral diffusion of lipid II that is likely flipped by the septal flippase, FtsW. Furthermore, we applied a previously described synthetic in vivo system in combination with FRET to identify an interaction between C. glutamicum RodA and the polar growth organizing protein DivIVA.  相似文献   

4.
Streptomyces cells grow by building cell wall at one pole-the hyphal tip. Although analogous to hyphal growth in fungi, this is achieved in a prokaryote, without any of the well-known eukaryotic cell polarity proteins, and it is also unique among bacterial cases of cell polarity. Further, polar growth of Streptomyces and the related mycobacteria and corynebacteria is independent of the MreB cytoskeleton and involves a number of coiled-coil proteins, including the polarity determinant DivIVA. Recent progress sheds light on targeting of DivIVA to hyphal tips and highlight protein phosphorylation in the regulation of actinobacterial growth. Furthermore, cell polarity affects not only cell envelope biogenesis in Streptomyces, but apparently also assembly of fimbriae, conjugation and migration of nucleoids.  相似文献   

5.
Polarisome is a protein complex that plays an important role in polarized growth in fungi by assembling actin cables towards the site of cell growth. For proper morphogenesis, the polarisome must localize to the right place at the right time. However, the mechanisms that control polarisome localization remain poorly understood. In this study, using the polymorphic fungus Candida albicans as a model, we have discovered that the cyclin‐dependent kinase (CDK) Cdc28 phosphorylates the polarisome scaffold protein Spa2 to govern polarisome localization during both yeast and hyphal growth. In a yeast cell cycle, Cdc28‐Clb2 phosphorylates Spa2 and controls the timing of polarisome translocation from the bud tip to the bud neck. And during hyphal development, Cdc28‐Clb2 and the hyphal‐specific Cdc28‐Hgc1 cooperate to enhance Spa2 phosphorylation to maintain the polarisome at the hyphal tip. Blocking the CDK phosphorylation causes premature tip‐to‐neck translocation of Spa2 during yeast growth and inappropriate septal localization of Spa2 in hyphae and abnormal hyphal morphology under certain inducing conditions. Together, our results generate new insights into the mechanisms by which fungi regulate polarisome localization in the control of polarized growth.  相似文献   

6.
Xu H  Chater KF  Deng Z  Tao M 《Journal of bacteriology》2008,190(14):4971-4978
Cellulose synthase and cellulose synthase-like proteins, responsible for synthesizing beta-glucan-containing polysaccharides, play a fundamental role in cellular architectures, such as plant cell and tissue morphogenesis, bacterial biofilm formation, and fruiting-body development. However, the roles of the proteins involved in the developmental process are not well understood. Here, we report that a cellulose synthase-like protein (CslA(Sc)) in Streptomyces has a function in hyphal tip growth and morphological differentiation. The cslA(Sc) replacement mutant showed pleiotropic defects, including the severe delay of aerial-hyphal formation and altered cell wall morphology. Calcofluor white fluorescence analysis demonstrated that polysaccharide synthesis at hyphal tips was dependent on CslA(Sc). cslA(Sc) was constitutively transcribed, and an enhanced green fluorescent protein-CslA(Sc) fusion protein was mostly located at the hyphal tips. An extract enriched in morphogenetic chaplin proteins promoted formation of aerial hyphae by the mutant. Furthermore, a two-hybrid experiment indicated that the glycosyltransferase domain of CslA(Sc) interacted with the tropomyosin-like polarity-determining DivIVA protein, suggesting that the tip-located DivIVA governed tip recruitment of the CslA(Sc) membrane protein. These results imply that the cellulose synthase-like protein couples extracellular and cytoskeletal components functioning in tip growth and cell development.  相似文献   

7.
Video-enhanced light microscopy of the apical and subapical regions of growing hyphae of several fungal species revealed the existence of momentary synchronized motions of subcellular organelles. First discovered in a temperature-sensitive morphological mutant (ramosa-1) of Aspergillus niger, these seemingly spontaneous cytoplasmic contractions were also detected in wild-type hyphae of A. niger, Neurospora crassa, and Trichoderma atroviride. Cytoplasmic contractions in all fungi lasted about 1 s. Although the cytoplasm recovered its motility and appearance, the contraction usually led to drastic changes in Spitzenkörper (apical body) behavior and hyphal morphology, often both. Within 10 s after the contraction, the Spitzenkörper commonly became dislodged from its polar position; sometimes it disassembled into phase-dark and phase-light components; more commonly, it disappeared completely. Whether partial or complete, the dislocation of the Spitzenkörper was always accompanied by a sharp reduction or cessation of growth, and was usually followed by marked morphological changes that included bulbous hyphal tips, bulges in the hyphal profile, and formation of subapical and apical branches. The cytoplasmic contractions are vivid evidence that the most conspicuous cell organelles (membrane-bound) in living hyphae are interconnected via a contractile cytoskeletal network.  相似文献   

8.
Filamentous hyphae of the human pathogen, Candida albicans, invade mucosal layers and medical silicones. In vitro, hyphal tips reorient thigmotropically on contact with small obstacles. It is not known how surface topography is sensed but hyphae lacking the cortical marker, Rsr1/Bud1, are unresponsive. We show that, on surfaces, the morphology of hyphal tips and the position of internal polarity protein complexes are asymmetrically skewed towards the substratum and biased towards the softer of two surfaces. In nano‐fabricated chambers, the Spitzenkörper (Spk) responded to touch by translocating across the apex towards the point of contact, where its stable maintenance correlated with contour‐following growth. In the rsr1Δ mutant, the position of the Spk meandered and these responses were attenuated. Perpendicular collision caused lateral Spk oscillation within the tip until after establishment of a new growth axis, suggesting Spk position does not predict the direction of growth in C. albicans. Acute tip reorientation occurred only in cells where forward growth was countered by hyphal friction sufficient to generate a tip force of ~ 8.7 μN (1.2 MPa), more than that required to penetrate host cell membranes. These findings suggest mechanisms through which the organization of hyphal tip growth in C. albicans facilitates the probing, penetration and invasion of host tissue.  相似文献   

9.
Time-lapse imaging of Streptomyces hyphae revealed foci of the essential protein DivIVA at sites where lateral branches will emerge. Overexpression experiments showed that DivIVA foci can trigger establishment of new zones of cell wall assembly, suggesting a key role of DivIVA in directing peptidoglycan synthesis and cell shape in Streptomyces.  相似文献   

10.
Tip growth of the mycelial fungus N. crassa vegetative hyphae is realized owing to the combined activities of tens of the cells and diverse intracellular structures, such as microvesicles, microtubules, microfilaments, mitochondria, etc. Using a vital mitochondrial probe Mitotracker Red (10 μM, 10 min) we have found that the same mitochondria can move hundreds of microns along the hyphae within several hours. Analysis of the mitochondria distribution along 100 μm of the tips in intact hyphae as well as in the isolated apical fragments has shown that the congregation of mitochondria in the growing tips can correlate with the rate of elongation. These data together with the earlier electrophysiological estimations of the membrane potential gradients along the hyphal tips suggest that the electrical gradients along the hyphal apical part can be involved in the regulation of the energy supply of the tip growth.  相似文献   

11.
12.
Endocytosis is vital for hyphal tip growth in filamentous fungi and is involved in the tip localization of various membrane proteins. To investigate the function of a Wiskott–Aldrich syndrome protein (WASP) in endocytosis of filamentous fungi, we identified a WASP ortholog-encoding gene, wspA, in Aspergillus nidulans and characterized it. The wspA product, WspA, localized to the tips of germ tubes during germination and actin rings in the subapical regions of mature hyphae. wspA is essential for the growth and functioned in the polarity establishment and maintenance during germination of conidia. We also investigated its function in endocytosis and revealed that endocytosis of SynA, a synaptobrevin ortholog that is known to be endocytosed at the subapical regions of hyphal tips in A. nidulans, did not occur when wspA expression was repressed. These results suggest that WspA plays roles in endocytosis at hyphal tips and polarity establishment during germination.  相似文献   

13.
Summary Light and electron microscopic observations on vegetative hyphae ofAllomyces arbuscula revealed the specialized organization of the tip. There were some minor differences related to culture conditions, but the main ultrastructural features common to all hyphal tips disclosed a special type of organization distinct from that of other fungi. A crescent-shaped apical zone consisted of vesicles and membrane cisternae embedded in a granular matrix. Vesicles fused with the apical plasmalemma and presumably contributed to its expansion and to wall growth. The apical zone contained few ribosomes and generally no other organelles. Mitochondria were concentrated in the immediate subapical zone and scattered through the remainder of the hyphae, as were microbodies. Microtubules formed an asterlike structure with its center in the apical zone. Proximally of the apex, microtubules were axially oriented. Nuclei occurred only a certain distance from the tip. The elements of the apex may maintain the polarity of the hyphae via a gradient and hold it in a state of vegetative growth.  相似文献   

14.
Summary Apical growth of hyphae of Fusarium culmorum was demonstrated using an immunofluorescent labelling technique. An antiserum prepared against hyphal tips contained a series of antibodies, detected by immunodiffusion, not present in antisera against mature hyphae or conidia. Absorption of the tip antiserum with hyphae allowed a specific immunofluorescence reaction with hyphal tips only. The antiserum against mature hyphae gave non-fluorescent tips to the hyphae.  相似文献   

15.
DivIVA is a conserved protein in Gram‐positive bacteria that localizes at the poles and division sites, presumably through direct sensing of membrane curvature. DivIVA functions as a scaffold and is vital for septum site selection during vegetative growth and chromosome anchoring during sporulation. DivIVA deletion causes filamentous growth in Bacillus subtilis, whereas overexpression causes hyphal branching in Streptomyces coelicolor. We have determined the crystal structure of the N‐terminal (Nt) domain of DivIVA, and show that it forms a parallel coiled‐coil. It is capped with two unique crossed and intertwined loops, exposing hydrophobic and positively charged residues that we show here are essential for membrane binding. An intragenic suppressor introducing a positive charge restores membrane binding after mutating the hydrophobic residues. We propose that the hydrophobic residues insert into the membrane and that the positively charged residues bind to the membrane surface. A low‐resolution crystal structure of the C‐terminal (Ct) domain displays a curved tetramer made from two parallel coiled‐coils. The Nt and Ct parts were then merged into a model of the full length, 30 nm long DivIVA protein.  相似文献   

16.
The cell division protein DivIVA influences protein transport via the accessory SecA2 secretion route in Listeria monocytogenes. In contrast, DivIVA from the closely related bacterium Bacillus subtilis contributes to division site selection via the MinCDJ system. However, no classical min phenotype, i.e. filamentation and minicell production was observed with a listerial ΔdivIVA mutant. This has prompted the speculation that division site selection is DivIVA‐independent in L. monocytogenes. We addressed this question with genetic, cytological and bacterial two‐hybrid experiments and the data obtained correct this view. DivIVA not only binds to MinJ but also directly interacts with MinD. Experiments with fluorescently tagged proteins showed that localization of MinC and MinD was clearly DivIVA‐dependent, whereas localization of MinJ was not. An impact of DivIVA on cell division was confirmed by careful comparisons of cell size distributions of divIVA and secA2 mutants. Gene deletion studies and epistasis experiments consistently reinforced these findings, and also revealed that MinJ must have a DivIVA‐independent function. The frequency of minicell formation is low in L. monocytogenes min mutants. However, since listerial minicells might be useful as carriers for the introduction of therapeutic compounds into eukaryotic cells, we present a strategy how minicell frequency can be increased.  相似文献   

17.
Hyphal tips of fungi representing Oömycetes, Zygomycetes, Ascomycetes, Basidiomycetes, and Deuteromycetes were examined by light and electron microscopy and compared with respect to their protoplasmic organization. In all fungi studied, there is a zone at the hyphal apex which is rich in cytoplasmic vesicles but nearly devoid of other cell components. Some vesicle profiles are continuous with the plasma membrane at the apices of these tip-growing cells. The subapical zones of hyphae contain an endomembrane system which includes smooth-surfaced cisternae associated with small clusters of vesicles. The findings are consistent with the hypothesis that vesicles produced by the endomembrane system in the subapical region become concentrated in the apex where they are incorporated at the expanding surface. Septate fungi (Ascomycetes, Basidiomycetes, and Deuteromycetes) have an apical body (Spitzenkörper) which is associated with growing hyphal tips. In electron micrographs of these fungi, an additional specialized region within the accumulation of apical vesicles is shown for the first time. This region corresponds on the bases of distribution among fungi, location in hyphae, size, shape and boundary characteristics to the Spitzenkörper seen by light microscopy. This structure is not universally associated with tip growth, whereas apical vesicles are widespread among tip-growing systems.  相似文献   

18.
Fungal hyphae and plant pollen tubes are among the most highly polarized cells known and pose extraordinary requirements on their cell polarity machinery. Cellular morphogenesis is driven through the phospholipid-dependent organization at the apical plasma membrane. We characterized the contribution of phosphoinositides (PIs) in hyphal growth of the filamentous ascomycete Neurospora crassa. MSS-4 is an essential gene and its deletion resulted in spherically growing cells that ultimately lyse. Two conditional mss-4-mutants exhibited altered hyphal morphology and aberrant branching at restrictive conditions that were complemented by expression of wild type MSS-4. Recombinant MSS-4 was characterized as a phosphatidylinositolmonophosphate-kinase phosphorylating phosphatidylinositol 4-phosphate (PtdIns4P) to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). PtdIns3P was also used as a substrate. Sequencing of two conditional mss-4 alleles identified a single substitution of a highly conserved Y750 to N. The biochemical characterization of recombinant protein variants revealed Y750 as critical for PI4P 5-kinase activity of MSS-4 and of plant PI4P 5-kinases. The conditional growth defects of mss-4 mutants were caused by severely reduced activity of MSS-4(Y750N), enabling the formation of only trace amounts of PtdIns(4,5)P2. In N. crassa hyphae, PtdIns(4,5)P2 localized predominantly in the plasma membrane of hyphae and along septa. Fluorescence-tagged MSS-4 formed a subapical collar at hyphal tips, localized to constricting septa and accumulated at contact points of fusing N. crassa germlings, indicating MSS-4 is responsible for the formation of relevant pools of PtdIns(4,5)P2 that control polar and directional growth and septation. N. crassa MSS-4 differs from yeast, plant and mammalian PI4P 5-kinases by containing additional protein domains. The N-terminal domain of N. crassa MSS-4 was required for correct membrane association. The data presented for N. crassa MSS-4 and its roles in hyphal growth are discussed with a comparative perspective on PI-control of polar tip growth in different organismic kingdoms.  相似文献   

19.
Unlike most other cells, hyphae of filamentous fungi permanently elongate and lack nonpolar growth phases. We identified AgBoi1/2p in the filamentous ascomycete Ashbya gossypii as a component required to prevent nonpolar growth at hyphal tips. Strains lacking AgBoi1/2p frequently show spherical enlargement at hyphal tips with concomitant depolarization of actin patches and loss of tip-located actin cables. These enlarged tips can repolarize and resume hyphal tip extension in the previous polarity axis. AgBoi1/2p permanently localizes to hyphal tips and transiently to sites of septation. Only the tip localization is important for sustained elongation of hyphae. In a yeast two-hybrid experiment, we identified the Rho-type GTPase AgRho3p as an interactor of AgBoi1/2p. AgRho3p is also required to prevent nonpolar growth at hyphal tips, and strains deleted for both AgBOI1/2 and AgRHO3 phenocopied the respective single-deletion strains, demonstrating that AgBoi1/2p and AgRho3p function in a common pathway. Monitoring the polarisome of growing hyphae using AgSpa2p fused to the green fluorescent protein as a marker, we found that polarisome disassembly precedes the onset of nonpolar growth in strains lacking AgBoi1/2p or AgRho3p. AgRho3p locked in its GTP-bound form interacts with the Rho-binding domain of the polarisome-associated formin AgBni1p, implying that AgRho3p has the capacity to directly activate formin-driven actin cable nucleation. We conclude that AgBoi1/2p and AgRho3p support polarisome-mediated actin cable formation at hyphal tips, thereby ensuring permanent polar tip growth.  相似文献   

20.
Summary Hyphae ofNeurospora crassa, like many other tipgrowing organisms, drive endogenous electric currents through themselves such that positive charges flow into the apical region and exit from the trunk. In order to identify the ions that carry the current, the complete growth medium was replaced by media lacking various constituents. Omission of K+ or of phosphate diminished the zone of inward current, effectively shifting the current pattern towards the apex. Omission of glucose markedly reduced both inward and outward currents; addition of sodium azide virtually abolished the flow of electric current. Growing hyphae also generate a longitudinal pH gradient: the medium surrounding the apex is slightly more alkaline than the bulk phase, while medium adjacent to the trunk turns acid. The results suggest thatNeurospora hyphae generate a proton current; protons are expelled distally by the H+-ATPase and return into the apical region by a number of pathways, including the symport of protons with phosphate and potassium ions. Calcium influx may also contribute to the electric current that enters the apical region. There seems to be no simple obligatory linkage between the intensity of the transcellular electric current and the rate of hyphal extension. Calcium ions, however, are required in micromolar concentrations for extensions and morphogenesis of hyphal tips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号