首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a working model for the uptake of transforming DNA based on evidence taken from both Bacillus subtilis and Streptococcus pneumoniae, the ComG proteins are proposed to form a structure that provides access for DNA to the ComEA receptor through the peptidoglycan. DNA would then be delivered to the ComEC-ComFA transport complex. A DNA strand would be degraded by a nuclease, while its complement is pulled into the cell by ComFA through an aqueous pore formed by ComEC. The nuclease is known in S. pneumoniae only as EndA. We have examined the processing (i.e. binding, degradation and internalization) of DNA in S. pneumoniae strains lacking candidate uptake proteins. Mutants were generated by transposon insertion in endA, comEA/C, comFA/C, comGA and dprA. Processing of DNA was abolished only in a comGA mutant. As significant binding was measured in comEA mutants, we suggest the existence of two stages in binding: surface attachment (abolished in a comGA mutant) required for and preceding deep binding (by ComEA). Abolition of degradation in comGA and comEA mutants indicated that, despite its membrane location, EndA cannot access donor DNA by itself. We propose that ComEA is required to deliver DNA to EndA. DNA was still bound and degraded in comEC and comFA mutants. We conclude that recruitment of EndA can occur in the absence of ComEC or ComFA and that EndA is active even when the single strands it produces are not pulled into the cell. Finally, inactivation of dprA had no effect on the internalization of DNA, indicating that DprA is required at a later stage in transformation.  相似文献   

2.
Multiple interactions among the competence proteins of Bacillus subtilis   总被引:2,自引:0,他引:2  
Proteins required for transformation of Bacillus subtilis and other competent bacteria are associated with the membrane or reside in the cytosol. Previous work has shown that RecA, ComGA, ComFA and SsbB are directed to the cell poles in competent cells, and that the uptake of transforming DNA occurs preferentially at the poles. We show that ComGA, ComFA, DprA (Smf), SsbB (YwpH), RecA and YjbF (CoiA) are located at the cell poles, where they appear to colocalize. Using fluorescence resonance energy transfer, we have shown that these six competent (Com) proteins reside in close proximity to one another. This conclusion was supported by the effects of com gene knockouts on the stabilities of Com proteins. Data obtained from the com gene knockout studies, as well as information from other sources, extend the list of proteins in the transformation complex to include ComEC and ComEA. Because ComGA and ComFA are membrane-associated, while DprA, SsbB, RecA and YjbF are soluble, a picture emerges of a large multiprotein polar complex, involving both cytosolic and membrane proteins. This complex mediates the binding and uptake of single-stranded DNA, the protection of this DNA from cellular nucleases and its recombination with the recipient chromosome.  相似文献   

3.
4.
5.
High-temperature requirement A (HtrA), a highly conserved family of serine protease, plays crucial roles in protein quality control in prokaryotes and eukaryotes. The HtrA protein contains a C-terminal PDZ domain that mediates the proteolytic activity. Here we reported the solution structure of the HtrA PDZ domain from Streptococcus pneumoniae by NMR spectroscopy. Our results showed that the structure of HtrA PDZ domain, which contains three α-helices and five β-strands, illustrates conservation within the canonical PDZ domains. In addition, we demonstrated the interactions between S. pneumoniae HtrA PDZ domain and peptides with the motif XXX–YYF–COOH by surface plasmon resonance. Besides, we identified the ligand binding surface and the critical residues responsible for ligand binding of HtrA PDZ domain by chemical shift perturbation and site-directed mutagenesis.  相似文献   

6.
Bacterial competence, which can be natural or induced, allows the uptake of exogenous double stranded DNA (dsDNA) into a competent bacterium. This process is known as transformation. A multiprotein assembly binds and processes the dsDNA to import one strand and degrade another yet the underlying molecular mechanisms are relatively poorly understood. Here distant relationships of domains in Competence protein EC (ComEC) of Bacillus subtilis (Uniprot: P39695) were characterized. DNA‐protein interactions were investigated in silico by analyzing models for structural conservation, surface electrostatics and structure‐based DNA binding propensity; and by data‐driven macromolecular docking of DNA to models. Our findings suggest that the DUF4131 domain contains a cryptic DNA‐binding OB fold domain and that the β‐lactamase‐like domain is the hitherto cryptic competence nuclease. Proteins 2016; 84:1431–1442. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

7.
Activation of the CiaRH two-component signaling system prevents the development of competence for genetic transformation in Streptococcus pneumoniae through a previously unknown mechanism. Earlier studies have shown that CiaRH controls the expression of htrA, which we show encodes a surface-expressed serine protease. We found that mutagenesis of the putative catalytic serine of HtrA, while not impacting the competence of a ciaRH+ strain, restored a normal competence profile to a strain having a mutation that constitutively activates the CiaH histidine kinase. This result implies that activity of HtrA is necessary for the CiaRH system to inhibit competence. Consistent with this finding, recombinant HtrA (rHtrA) decreased the competence of pneumococcal cultures. The rHtrA-mediated decline in transformation efficiency could not be corrected with excess competence-stimulating peptide (CSP), suggesting that HtrA does not act through degradation of this signaling molecule. The inhibitory effects of rHtrA and activated CiaH, however, were largely overcome in a strain having constitutive activation of the competence pathway through a mutation in the cytoplasmic domain of the ComD histidine kinase. Although these results suggested that HtrA might act through degradation of the extracellular portion of the ComD receptor, Western immunoblots for ComD did not reveal changes in protein levels attributable to HtrA. We therefore postulate that HtrA may act on an unknown protein target that potentiates the activation of the ComDE system by CSP. These findings suggest a novel regulatory role for pneumococcal HtrA in modulating the activity of a two-component signaling system that controls the development of genetic competence.  相似文献   

8.
Thermus thermophilus HB27 is well known for its extraordinary trait of high frequencies of natural transformation, which is considered a major mechanism of horizontal gene transfer. We show that the DNA translocator of T. thermophilus binds and transports DNA from members of all three domains. These results, together with the data obtained from genome comparisons, suggest that the DNA translocator of T. thermophilus has a major impact in adaptation of Thermus to thermal stress conditions and interdomain DNA transfer in extreme hot environments. DNA transport in T. thermophilus is mediated by a macromolecular transport machinery that consists of at least 16 subunits and spans the cytoplasmic membrane and the entire cell periphery. Here, we have addressed the role of single subunits in DNA binding and transport. PilQ is involved in DNA binding, ComEA, PilF and PilA4 are involved in transport of DNA through the outer membrane and PilM, PilN, PilO, PilA1–3, PilC and ComEC are essential for the transport of DNA through the thick cell wall layers and/or through the inner membrane. These data are discussed in the light of the subcellular localization of the proteins. A topological model for DNA transport across the cell wall is presented.  相似文献   

9.
Pneumococcal natural transformation contributes to genomic plasticity, antibiotic resistance development and vaccine escape. Streptococcus pneumoniae, like many other naturally transformable species, has evolved sophisticated protein machinery for the binding and uptake of DNA. Two proteins encoded by the comF operon, ComFA and ComFC, are involved in transformation but their exact molecular roles remain unknown. In this study, we provide experimental evidence that ComFA binds to single stranded DNA (ssDNA) and has ssDNA‐dependent ATPase activity. We show that both ComFA and ComFC are essential for the transformation process in pneumococci. Moreover, we show that these proteins interact with each other and with other proteins involved in homologous recombination, such as DprA, thus placing the ComFA‐ComFC duo at the interface between DNA uptake and DNA recombination during transformation.  相似文献   

10.
Genetic transformation, in which cells internalize exogenous DNA and integrate it into their chromosome, is widespread in the bacterial kingdom. It involves a specialized membrane-associated machinery for binding double-stranded (ds) DNA and uptake of single-stranded (ss) fragments. In the human pathogen Streptococcus pneumoniae, this machinery is specifically assembled at competence. The EndA nuclease, a constitutively expressed virulence factor, is recruited during competence to play the key role of converting dsDNA into ssDNA for uptake. Here we use fluorescence microscopy to show that EndA is uniformly distributed in the membrane of noncompetent cells and relocalizes at midcell during competence. This recruitment requires the dsDNA receptor ComEA. We also show that under ‘static’ binding conditions, i.e., in cells impaired for uptake, EndA and ComEA colocalize at midcell, together with fluorescent end-labelled dsDNA (Cy3-dsDNA). We conclude that midcell clustering of EndA reflects its recruitment to the DNA uptake machinery rather than its sequestration away from this machinery to protect transforming DNA from extensive degradation. In contrast, a fraction of ComEA molecules were located at cell poles post-competence, suggesting the pole as the site of degradation of the dsDNA receptor. In uptake-proficient cells, we used Cy3-dsDNA molecules enabling expression of a GFP fusion upon chromosomal integration to identify transformed cells as GFP producers 60–70 min after initial contact between DNA and competent cells. Recording of images since initial cell-DNA contact allowed us to look back to the uptake period for these transformed cells. Cy3-DNA foci were thus detected at the cell surface 10–11 min post-initial contact, all exclusively found at midcell, strongly suggesting that active uptake of transforming DNA takes place at this position in pneumococci. We discuss how midcell uptake could influence homology search, and the likelihood that midcell uptake is characteristic of cocci and/or the growth phase-dependency of competence.  相似文献   

11.
The DNA uptake of naturally competent bacteria has been attributed to the action of DNA uptake machineries resembling type IV pilus complexes. However, the protein(s) for pulling the DNA across the outer membrane of Gram-negative bacteria remain speculative. Here we show that the competence protein ComEA binds incoming DNA in the periplasm of naturally competent Vibrio cholerae cells thereby promoting DNA uptake, possibly through ratcheting and entropic forces associated with ComEA binding. Using comparative modeling and molecular simulations, we projected the 3D structure and DNA-binding site of ComEA. These in silico predictions, combined with in vivo and in vitro validations of wild-type and site-directed modified variants of ComEA, suggested that ComEA is not solely a DNA receptor protein but plays a direct role in the DNA uptake process. Furthermore, we uncovered that ComEA homologs of other bacteria (both Gram-positive and Gram-negative) efficiently compensated for the absence of ComEA in V. cholerae, suggesting that the contribution of ComEA in the DNA uptake process might be conserved among naturally competent bacteria.  相似文献   

12.
The HtrA protease of Streptococcus pneumoniae functions both in a general stress response role and as an error sensor that specifically represses genetic competence when the overall level of biosynthetic errors in cellular proteins is low. However, the mechanism through which HtrA inhibits development of competence has been unknown. We found that HtrA digested the pneumococcal competence-stimulating peptide (CSP) and constituted the primary extracytoplasmic CSP-degrading activity in cultures of S. pneumoniae. Mass spectrometry demonstrated that cleavage predominantly followed residue Phe-8 of the CSP-1 isoform of the peptide within its central hydrophobic patch, and in competition assays, both CSP-1 and CSP-2 interacted with HtrA with similar efficiencies. More generally, analysis of β-casein digestion and of digestion within HtrA itself revealed a preference for substrates with non-polar residues at the P1 site. Consistent with a specificity for exposed hydrophobic residues, competition from native BSA only weakly inhibited digestion of CSP, but denaturation converted BSA into a strong competitive inhibitor of such proteolysis. Together these findings support a model in which digestion of CSP by HtrA is reduced in the presence of other unfolded proteins that serve as alternative targets for degradation. Such competition may provide a mechanism by which HtrA functions in a quality control capacity to monitor the frequency of biosynthetic errors that result in protein misfolding.  相似文献   

13.
Jeon B  Zhang Q 《Journal of bacteriology》2007,189(20):7399-7407
Campylobacter jejuni is an important bacterial pathogen causing gastroenteritis in humans. C. jejuni is capable of natural transformation, which is considered a major mechanism mediating horizontal gene transfer and generating genetic diversity. Despite recent efforts to elucidate the transformation mechanisms of C. jejuni, the process of DNA binding and uptake in this organism is still not well understood. In this study, we report a previously unrecognized DNA-binding protein (Cj0011c) in C. jejuni that contributes to natural transformation. Cj0011c is a small protein (79 amino acids) with a partial sequence homology to the C-terminal region of ComEA in Bacillus subtilis. Cj0011c bound to both single- and double-stranded DNA. The DNA-binding activity of Cj0011c was demonstrated with a variety of DNAs prepared from C. jejuni or Escherichia coli, suggesting that the DNA binding of Cj0011c is not sequence dependent. Deletion of the cj0011c gene from C. jejuni resulted in 10- to 50-fold reductions in the natural transformation frequency. Different from the B. subtilis ComEA, which is an integral membrane protein, Cj0011c is localized in the periplasmic space of C. jejuni. These results indicate that Cj0011c functions as a periplasmic DNA receptor contributing to the natural transformation of C. jejuni.  相似文献   

14.
ComEA is a DNA receptor for transformation of competent Bacillus subtilis   总被引:3,自引:2,他引:1  
Competent cells of Bacillus subtilis efficiently bind and internalize DNA. ComEA and the seven proteins encoded by the comG operon are required in vivo for the binding step. We show here that ComEA, a bitopic membrane protein, is itself capable of high-affinity DNA binding. A domain necessary for DNA binding is located at the C-terminus of ComEA. Proteins with similar 60–80 amino acid residue domains are widespread among bacteria and higher organisms. ComEA shows a marked preference for double-stranded DNA and can bind to oligomers as small as 22 bp in length. DNA binding by ComEA exhibits no apparent base sequence specificity. Using a membrane vesicle DNA-binding assay system we show that in the absence of cell wall, ComEA is still required for DNA binding, whereas the requirement for the ComG proteins is bypassed. We conclude that the ComG proteins are needed in vivo to provide access of the binding domain of ComEA to exogenous DNA. Possible specific roles for the ComG proteins are discussed.  相似文献   

15.
Aims: To develop a general method for site‐directed mutagenesis in the dairy starter strain Streptococcus thermophilus LMG 18311 which does not depend on antibiotic‐resistance genes or other selection markers for the identification of transformants. Methods and Results: In a previous study, we demonstrated that Strep. thermophilus LMG 18311 can be made competent for natural genetic transformation by overexpression of the alternative sigma factor ComX. In the present study, we wanted to investigate whether the natural transformation mechanism of Strep. thermophilus LMG 18311 is efficient enough to make it feasible to perform site‐directed mutagenesis in this strain without the use of a selection marker. Competent bacteria were mixed with a DNA fragment engineered to contain a nonsense and a frameshift mutation in the middle of the target gene (lacZ) and subsequently seeded on agar plates. By performing colony‐lift hybridization using a digoxigenin‐labelled oligonucleotide probe, we succeeded in identifying transformants containing the sought after mutation. Conclusions: By exploiting the natural transformability of Strep. thermophilus LMG 18311 and standard molecular methods, we have demonstrated that the genome of this bacterium can be altered at preselected sites without introduction of any foreign DNA. Significance and Impact of the Study: A food‐grade site‐directed mutagenesis system has been developed for Strep. thermophilus LMG 18311 that can be used by the dairy industry to construct starter strains with novel and/or improved properties.  相似文献   

16.
ComEC is a putative channel protein for DNA uptake in Bacillus subtilis and other genetically transformable bacteria. Membrane topology studies suggest a model of ComEC as a multispanning membrane protein with seven transmembrane segments (TMSs), and possibly with one laterally inserted amphipathic helix. We show that ComEC contains an intramolecular disulphide bond in its N-terminal extracellular loop (between the residues C131 and C172), which is required for the stability of the protein, and is probably introduced by BdbDC, a pair of competence-induced oxidoreductase proteins. By in vitro cross-linking using native cysteine residues we show that ComEC forms an oligomer. The oligomerization surface includes a transmembrane segment, TMS-G, near the cytoplasmic C-terminus of ComEC.  相似文献   

17.
We describe a general method for random mutagenesis of cloned genes by error-prone PCR or DNA shuffling that eliminates the need for post-amplification subcloning following each cycle of mutagenesis. This method exploits the highly efficient and recombinogenic nature of DNA uptake during natural transformation in the Gram-positive bacterium Bacillus subtilis and the Gram-negative bacterium Acinetobacter calcoaceticus. Plasmid systems were designed that allow capture of PCR-amplified DNA fragments by marker-replacement recombination with a structurally similar helper plasmid resident in the transformation recipient. This recombination event simultaneously transfers the amplified sequences into the helper plasmid and restores the integrity of a drug resistance gene, thereby affording a direct selection for fragment capture. Although this strategy was sufficiently effective to permit recovery in B. subtilis of up to 10(3) transformants/microgram of PCR product, equivalent plasmid systems were approximately 100 times more efficient in A.calcoaceticus. Acinetobacter calcoaceticus also offers the advantage of essentially constitutive transformation competence in ordinary complex broth, such as LB, in contrast to two-step growth in semi-synthetic media required for optimal transformation of B.subtilis.  相似文献   

18.
Acinetobacter sp. strain BD413 (= ATCC 33305), a nutritionally versatile bacterium, has an extremely efficient natural transformation system. Here we describe the generation of eight transformation-affected mutants of Acinetobacter sp. strain BD413 by insertional mutagenesis. These mutants were found by Southern blot analysis and complementation studies to result from single nptII marker insertions at different chromosomal loci. DNA binding and uptake studies with one mutant, T205, revealed that the transformation deficiency of this mutant results from a complete lack of DNA binding and, therefore, uptake activity. A novel competence gene essential for natural transformation, named comP, was cloned by complementation of mutant T205. The nucleotide sequence of comP was determined, and its deduced 15-kDa polypeptide displays significant similarities to type IV pilins. Analysis of the ultrastructure of a transformation-deficient comP mutant and the transformation-competent wild-type strain revealed that both are covered with bundle-forming thin fimbriae (3 to 4 nm in diameter) and individual thick fimbriae (6 nm in diameter). These results provide evidence that the pilinlike ComP is unrelated to the piluslike structures of strain BD413. Taking all data into account, we propose that ComP functions as a major subunit of an organelle acting as a channel or pore mediating DNA binding and/or uptake in Acinetobacter sp. strain BD413.  相似文献   

19.
In competent Bacillus subtilis, the ComG proteins are required to allow exogenous DNA to access to membrane-bound receptor ComEA during transformation. Here we describe a multimeric complex containing the pilin-like protein ComGC. Due to similarities to the type 4 pilus and the type 2 secretion system pseudopilus, we have tentatively named it the "competence pseudopilus." The ComGC multimer is released from cells upon digestion of the cell wall with lysozyme and has a heterogeneous size, estimated to range between 40 and 100 monomers, covalently linked by disulfide bonds. We determined that the prepilin peptidase ComC, the thiol-disulfide oxidoreductase pair BdbDC, and all seven ComG proteins are necessary to form the pseudopilus. Furthermore, these proteins are also sufficient to form a functional complex, i.e. able to facilitate binding of exogenous DNA to ComEA. The initial steps of pseudopilus biogenesis include the processing of ComGC in the cytoplasmic membrane and consist of two independent events, proteolytic cleavage by ComC and formation of an intramolecular disulfide bond by BdbDC. The other ComG proteins are required to assemble the mature ComGC monomers in the membrane into a multimeric complex proposed to span the cell envelope. We discuss the possible role of the competence pseudopilus in DNA binding and uptake during transformation.  相似文献   

20.
Membrane surface localized endonuclease EndA of the pulmonary pathogen Streptococcus pneumoniae (pneumococcus) is required for both genetic transformation and virulence. Pneumococcus expresses EndA during growth. However, it has been reported that EndA has no access to external DNA when pneumococcal cells are not competent for genetic transformation, and thus, unable to degrade extracellular DNA. Here, by using both biochemical and genetic methods, we demonstrate the existence of EndA-mediated nucleolytic activity independent of the competence state of pneumococcal cells. Pneumococcal mutants that are genetically deficient in competence development and genetic transformation have extracellular nuclease activity comparable to their parental wild type, including their ability to degrade neutrophil extracellular traps (NETs). The autolysis deficient ΔlytA mutant and its isogenic choline-treated parental wild-type strain D39 degrade extracellular DNA readily, suggesting that partial cell autolysis is not required for DNA degradation. We show that EndA molecules are secreted into the culture medium during the growth of pneumococcal cells, and contribute substantially to competence-independent nucleolytic activity. The competence-independent activity of EndA is responsible for the rapid degradation of DNA and NETs, and is required for the full virulence of Streptococcus pneumoniae during lung infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号