首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Caesalpinieae grade (Leguminosae) forms a morphologically and ecologically diverse group of mostly tropical tree species with a complex evolutionary history. This grade comprises several distinct lineages, but the exact delimitation of the group relative to subfamily Mimosoideae and other members of subfamily Caesalpinioideae, as well as phylogenetic relationships among the lineages are uncertain. With the aim of better resolving phylogenetic relationships within the Caesalpinieae grade, we investigated the utility of several nuclear markers developed from genomic studies in the Papilionoideae. We cloned and sequenced the low copy nuclear gene sucrose synthase (SUSY) and combined the data with plastid trnL and matK sequences. SUSY has two paralogs in the Caesalpinieae grade and in the Mimosoideae, but occurs as a single copy in all other legumes tested. Bayesian and maximum likelihood phylogenetic analyses suggest the two nuclear markers are congruent with plastid DNA data. The Caesalpinieae grade is divided into four well-supported clades (Cassia, Caesalpinia, Tachigali and Peltophorum clades), a poorly supported clade of Dimorphandra Group genera, and two paraphyletic groups, one with other Dimorphandra Group genera and the other comprising genera previously recognized as the Umtiza clade. A selection analysis of the paralogs, using selection models from PAML, suggests that SUSY genes are subjected to a purifying selection. One of the SUSY paralogs, under slightly stronger positive selection, may be undergoing subfunctionalization. The low copy SUSY gene is useful for phylogeny reconstruction in the Caesalpinieae despite the presence of duplicate copies. This study confirms that the Caesalpinieae grade is an artificial group, and highlights the need for further analyses of lineages at the base of the Mimosoideae.  相似文献   

2.
Euphorbia (Euphorbiaceae) comprises over 2150 species and is thus the second-largest genus of flowering plants. In Europe, it is represented by more than 100 species with highest diversity in the Mediterranean area; the majority of taxa belong to subgenus Esula Pers., including about 500 taxa. The few available phylogenetic studies yielded contrasting results regarding the monophyly of subg. Esula, and the phylogenetic relationships among its constituents remain poorly understood. We have sampled DNA sequences from the nuclear ribosomal internal transcribed spacer (ITS) and the plastid trnT-trnF region from about 100, predominantly European taxa of subg. Esula in order to infer its phylogenetic history. The plastid data support monophyly of subg. Esula whereas the ITS phylogeny, which is generally less resolved, is indecisive in this respect. Although some major clades have partly incongruent positions in the ITS and plastid phylogenies, the taxonomic content of the major terminal clades is congruent in both trees. As traditional sectional delimitations are largely not corroborated, an improved classification is proposed. Character state reconstruction illustrates that the annual life form developed independently several times in different clades of subgenus Esula from perennial ancestors, and that several morphological traits used in previous classifications of Euphorbia developed in parallel in different lineages.  相似文献   

3.
Impatiens L. is one of the largest angiosperm genera, containing over 1000 species, and is notorious for its taxonomic difficulty. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the genus to date based on a total evidence approach. Forty‐six morphological characters, mainly obtained from our own investigations, are combined with sequence data from three genetic regions, including nuclear ribosomal ITS and plastid atpB‐rbcL and trnL‐F. We include 150 Impatiens species representing all clades recovered by previous phylogenetic analyses as well as three outgroups. Maximum‐parsimony and Bayesian inference methods were used to infer phylogenetic relationships. Our analyses concur with previous studies, but in most cases provide stronger support. Impatiens splits into two major clades. For the first time, we report that species with three‐colpate pollen and four carpels form a monophyletic group (clade I). Within clade II, seven well‐supported subclades are recognized. Within this phylogenetic framework, character evolution is reconstructed, and diagnostic morphological characters for different clades and subclades are identified and discussed. Based on both morphological and molecular evidence, a new classification outline is presented, in which Impatiens is divided into two subgenera, subgen. Clavicarpa and subgen. Impatiens; the latter is further subdivided into seven sections.  相似文献   

4.
Symbiotic dinoflagellates belonging to the genus Symbiodinium (Freudenthal) are found worldwide in association with shallow‐water tropical and subtropical marine invertebrates. Most phylogenetic studies of Symbiodinium have used nuclear rRNA (nrDNA) genes to infer relationships among members of the genus. In this report, we present the first phylogeny of Symbiodinium based on DNA sequences from a mitochondrial protein‐coding gene (cytochrome oxidase subunit I [cox1]). Two principal groups, one comprised of Symbiodinium clade A and the second encompassing Symbiodinium clades B/C/D/E/F, are strongly supported in the cox1 phylogeny. Relationships within Symbiodinium clades B/C/D/E/F, however, are less well resolved compared with phylogenies inferred from nrDNA and chloroplast large subunit (cp23S)‐rDNA genes. Statistical tests between alternative tree topologies verified, with an exception being the position of one controversial member of Symbiodinium clade D, that relationships inferred from cox1 are congruent with those inferred from nrDNA and cp23S‐rDNA. Taken together, the relationships between the major Symbiodinium clades are robust, and there appears to be no evidence of hybridization or differential introgression of nuclear and plastid genomes between clades.  相似文献   

5.
We used sequences from both internal transcribed spacers (ITS) and a small portion of the 5.8S gene of nuclear ribosomal DNA (nrDNA) for phylogenetic reconstruction of 19 genera of Maloideae and four potential outgroups from the Rosaceae. Parsimony analyses indicate that Maloideae are not monophyletic; Vauquelinia, which is traditionally placed in Spiraeoideae, and two genera of the Maloideae, Eriobotrya and Rhaphiolepis, form a well-supported clade that is the sister to the remainder of the subfamily. Although our ITS phylogenetic hypothesis is highly resolved, there is considerable homoplasy, and support, as indicated by bootstrap values and decay indices, is relatively weak for all groups except four: Eriobotrya-Rhaphiolepis-Vauquelinia, Crataegus-Mespilus, Amelanchier-Peraphyllum-Malacomeles, and Cydonia-Pseudocydonia. Our DNA sequence data do not support a broad interpretation of Sorbus. Intergeneric hybridization, which is prevalent in Maloideae, occurs between genera that are far removed from one another on our most-parsimonious trees. We infer an overall phylogeny from separate analyses of ITS DNA sequences and recently published morphological and wood anatomical studies of Maloideae and from analyses after pooling these data sets. The four most strongly supported clades of the ITS phylogeny appear in the phylogeny based on pooled data.  相似文献   

6.
Common potato (Solanum tuberosum L.) and its wild relatives belong to Solanum section Petota. This section's phylogeny and species delimitation are complicated due to various ploidy levels, high heterozygosity, and frequent interspecific hybridization. Compared to the nuclear genome, the plastid genome is more conserved, has a haploid nature, and has a lower nucleotide substitution rate, providing informative alternative insights into the phylogenetic study of section Petota. Here, we analyzed 343 potato plastid genomes from 53 wild and four cultivated species. The diversity of sequences and genomes was comprehensively analyzed. A total of 24 species were placed in a phylogenetic tree based on genomic data for the first time. Overall, our results not only confirmed most existing clades and species boundaries inferred by nuclear evidence but also provided some distinctive species clade belonging and the maternally inherited evidence supporting the hybrid origin of some species. Furthermore, the divergence times between the major potato clades were estimated. In addition, the species discriminatory power of universal barcodes, nuclear ribosomal DNA, and whole and partial plastid genomes and their combinations were thoroughly evaluated; the plastid genome performed best but had limited discriminatory power for all survey species (40%). Overall, our study provided not only new insights into phylogeny and DNA barcoding of potato but also provided valuable genetic data resources for further systematical research of Petota.  相似文献   

7.
Aim To infer phylogenetic relationships among Antirrhinum species and to reconstruct the historical distribution of observed sequence polymorphism through estimates of haplotype clades and lineage divergence. Location Antirrhinum is distributed primarily throughout the western Mediterranean, with 22 of 25 species in the Iberian Peninsula. Methods Plastid (83 trnS‐trnG and 83 trnK‐matK) and nuclear (87 ITS) sequences were obtained from 96 individuals representing 24 of the 25 Antirrhinum species. Sequences were analysed using maximum parsimony, Bayesian inference and statistical parsimony networking. Molecular clock estimates were obtained for plastid trnK‐matK sequences using the penalized likelihood approach. Results Phylogenetic results gave limited support for monophyletic groups within Antirrhinum. Fifty‐one plastid haplotypes were detected and 27 missing haplotypes inferred, which were all connected in a single, star‐like network. A significant number of species shared both the same haplotypes and the same geographical areas, primarily in eastern Iberia. Furthermore, many species harboured populations with unrelated haplotypes from divergent haplotype clades. Plastid haplotype distribution, together with nucleotide additivity in 59 of the 86 nuclear ribosomal ITS sequences, is interpreted as evidence of extensive hybridization. Lineage divergence estimates indicated that differentiation within Antirrhinum post‐dates the Miocene, when the Mediterranean climate was established. Main conclusions Incongruence between plastid sequences, nuclear sequences and taxonomic delimitation is interpreted as strong evidence of limited cladogenetic processes in Antirrhinum. Rather, extensive nucleotide additivities in ITS sequences in conjunction with haplotype and haplotype‐clade distributions related to geographical areas support both recent and ancient hybridization. This geographical pattern of Antirrhinum speciation, particularly in eastern Iberia, is congruent with isolation–contact–isolation processes in the Pleistocene.  相似文献   

8.
Analyses of the mitochondrial cox1, the nuclear‐encoded large subunit (LSU), and the internal transcribed spacer 2 (ITS2) RNA coding region of Pseudo‐nitzschia revealed that the P. pseudodelicatissima complex can be phylogenetically grouped into three distinct clades (Groups I–III), while the P. delicatissima complex forms another distinct clade (Group IV) in both the LSU and ITS2 phylogenetic trees. It was elucidated that comprehensive taxon sampling (sampling of sequences), selection of appropriate target genes and outgroup, and alignment strategies influenced the phylogenetic accuracy. Based on the genetic divergence, ITS2 resulted in the most resolved trees, followed by cox1 and LSU. The morphological characters available for Pseudo‐nitzschia, although limited in number, were overall in agreement with the phylogenies when mapped onto the ITS2 tree. Information on the presence/absence of a central nodule, number of rows of poroids in each stria, and of sectors dividing the poroids mapped onto the ITS2 tree revealed the evolution of the recently diverged species. The morphologically based species complexes showed evolutionary relevance in agreement with molecular phylogeny inferred from ITS2 sequence–structure data. The data set of the hypervariable region of ITS2 improved the phylogenetic inference compared to the cox1 and LSU data sets. The taxonomic status of P. cuspidata and P. pseudodelicatissima requires further elucidation.  相似文献   

9.
Direct optimization was used to reconstruct the phylogeny of the 26 diploid taxa included in the genus Hordeum. The total data set was composed of 16 nucleotide sequence regions from the nuclear as well as the plastid genome. The nine nuclear regions were from single‐copy, protein coding genes located on six of the seven chromosome pairs in the diploid H. vulgare genome. The seven plastid regions comprise protein coding genes as well as intergenic regions. Studies of character congruence between data partitions showed no correlation between chromosomal location and congruence among the nuclear sequences and a level of congruence among the plastid sequences comparable with the level among the nuclear sequences. Combined analysis of all data resolved the phylogeny completely with most clades being robust and well supported. However, due to incongruence among data partitions some relationships are still and likely to remain ambiguously inferred. Rather than adding still more genes to the phylogenetic analyses, patterns of incongruence may be better explored by adding data from multiple specimens per taxon. For some species relationships the plastid data appear positively misleading, emphasizing the need for caution if plastid data are the only or dominant type of data used for phylogenetic reconstruction and subsequent re‐classification.
© The Willi Hennig Society 2011.  相似文献   

10.
11.
Until recently, Histoplasma capsulatum was believed to harbour three varieties, var. capsulatum (chiefly a New World human pathogen), var. duboisii (an African human pathogen) and var. farciminosum (an Old World horse pathogen), which varied in clinical manifestations and geographical distribution. We analysed the phylogenetic relationships of 137 individuals representing the three varieties from six continents using DNA sequence variation in four independent protein‐coding genes. At least eight clades were idengified: (i) North American class 1 clade; (ii) North American class 2 clade; (iii) Latin American group A clade; (iv) Latin American group B clade; (v) Australian clade; (vi) Netherlands (Indonesian?) clade; (vii) Eurasian clade and (viii) African clade. Seven of eight clades represented genetically isolated groups that may be recognized as phylogenetic species. The sole exception was the Eurasian clade which originated from within the Latin American group A clade. The phylogenetic relationships among the clades made a star phylogeny. Histoplasma capsulatum var. capsulatum individuals were found in all eight clades. The African clade included all of the H. capsulatum var. duboisii individuals as well as individuals of the other two varieties. The 13 individuals of var. farciminosum were distributed among three phylogenetic species. These findings suggest that the three varieties of Histoplasma are phylogenetically meaningless. Instead we have to recognize the existence of genetically distinct geographical populations or phylogenetic species. Combining DNA substitution rates of protein‐coding genes with the phylogeny suggests that the radiation of Histoplasma started between 3 and 13 million years ago in Latin America.  相似文献   

12.
The temperate East Asian genus Lycoris is a well known lineage of ornamental geophytes consisting of at least 20 species, some of which are thought to be of natural hybrid origin. Previous genetic studies have supported this hypothesis, but these have relied solely on the use of karyology and/or nuclear ribosomal ITS sequences. No plastid DNA data have been available to address interspecific relationships within Lycoris until now. In this study, 500 individuals from 29 populations representing 16 of the 20 published Lycoris spp. were sampled, and DNA sequences were generated for two plastid markers (trnS‐trnfM and trnC‐ycf6). From these data we inferred phylogenetic relationships among the sampled taxa at the species and population levels using concatenated phylogenetic methods. A well resolved and strongly supported phylogenetic reconstruction for Lycoris was obtained. Although the plastid DNA topology differs from that derived previously using ITS, both genomes produce trees that cluster Lycoris spp. into three clades. One of these, containing polyploid taxa such as L. albiflora, L. caldwellii, L. straminea and L. houdyshelii, shows strong evidence of reticulation, and we discuss the identity of potential parents of these allopolyploids. In contrast, we offer evidence that challenges the hypothesis that triploid individuals of L. radiata are the result of hybridization. Instead, they appear to be autotriploids that have arisen in more than one location. By comparing the phylogenetic results obtained using nuclear genomic data to those from the plastid genome, a much clearer picture of the role that hybridization and reticulation have played in the evolution of Lycoris is emerging. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 115–126.  相似文献   

13.
Plant molecular systematic studies of closely related taxa have relied heavily on sequence data from nuclear ITS and cpDNA. Positive attributes of using ITS sequence data include the rapid rate of evolution compared to most plastid loci and availability of universal primers for amplification and sequencing. On the other hand, ITS sequence data may not adequately track organismal phylogeny if concerted evolution and high rDNA array copy number do not permit identification of orthologous copies. Shaw et al. (American Journal of Botany 92: 142-166) recently identified nine plastid regions that appear to provide more potentially informative characters than many other plastid loci. In the present study, sequences of these loci and ITS were obtained for six taxonomic groups in which phylogenetic relationships have been difficult to establish using other data. The relative utility of these regions was compared by assessing the number of parsimony informative characters, character congruence, resolution of inferred trees, clade support, and accuracy. No single locus emerged as the best in all lineages for any of these measures of utility. Results further indicated that in preliminary studies, sampling strategy should include at least four exemplar taxa. The importance of sampling data from independent distributions is also discussed.  相似文献   

14.
 A plastid phylogeny of the genus Ilex based on three different loci (the atpB-rbcL spacer, trnL-trnF and rbcL) is compared with its nuclear phylogeny based on two different loci (the ribosomal ITS and the 5S RNA spacer). These two sets of molecular data are then compared to geographical and temporal data from the fossil record. The plastid phylogeny is strongly correlated with the geographic distribution of extant species. However, the nuclear phylogeny is strongly incongruent with the plastid phylogeny, suggesting frequent interlineage hybridizations. Moreover, the comparison of the ribosomal ITS tree and the 5S RNA spacer tree indicates also possible lineage sorting. Particularly interesting is the finding of two different Ilex lineages in the plastid American clade showing different biogeographic patterns in South America. One of them has a simple North American/South American biogeographical relationship. The other has complex biogeographical relationships, some species showing direct Asian/South American biogeographical relationships. During its history, the genus Ilex probably experienced frequent lineage sorting and interlineage hybridization with subsequent nuclear or cytoplasmic introgression, making the study of its history very complex. Received September 24, 2001; accepted August 19, 2002 Published online: November 28, 2002 Addresses of the authors: Jean-Fran?ois Manen (e-mail: manen@cjb.ville-ge.ch), Yamama Naciri-Graven, Conservatoire et Jardin Botaniques, Impératrice 1, CH-1292 Chambésy/Genève, Switzerland. Michael C. Boulter, Palaeobiology Research Unit, University of East London, Romford Road, London E15 4LZ, UK.  相似文献   

15.
Reconstructing the phylogeny of the sexually deceptive orchid genus Ophrys is crucial to our understanding of the evolution of its complex floral morphology. Molecular phylogenetic analyses showed that section Pseudophrys forms a well supported clade with Ophrys bombyliflora, O. tenthredinifera and O. speculum, but were unable to elucidate the relationships between these four groups of taxa. Here we conduct a morphological phylogenetic analysis of this unresolved clade of Ophrys based on a data matrix of 45 macro‐ and micromorphological and anatomical floral characters, using maximum parsimony and Bayesian inference. Our cladistic analysis yielded a single most parsimonious tree and a Bayesian 50% majority‐rule consensus tree which differed in their overall topology but agreed that O. tenthredinifera and O. bombyliflora are not sister groups. The phylogenetic placement of O. tenthredinifera was ambiguous since it shares six valid synapomorphies each with the cluster of O. speculumO. bombyliflora and with section Pseudophrys. In contrast, O. bombyliflora is most likely the sister group to O. speculum, a finding that rejects an earlier morphological phylogenetic hypothesis and favours the existing molecular trees based on nuclear ITS rather than plastid data. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 454–476.  相似文献   

16.
Ongoing hybridization and retained ancestral polymorphism in rapidly radiating lineages could mask recent cladogenetic events. This presents a challenge for the application of molecular phylogenetic methods to resolve differences between closely related taxa. We reanalyzed published genotyping‐by‐sequencing (GBS) data to infer the phylogeny of four species within the Ophrys sphegodes complex, a recently radiated clade of orchids. We used different data filtering approaches to detect different signals contained in the dataset generated by GBS and estimated their effects on maximum likelihood trees, global FST and bootstrap support values. We obtained a maximum likelihood tree with high bootstrap support, separating the species by using a large dataset based on loci shared by at least 30% of accessions. Bootstrap and FST values progressively decreased when filtering for loci shared by a higher number of accessions. However, when filtering more stringently to retain homozygous and organellar loci, we identified two main clades. These clades group individuals independently from their a priori species assignment, but were associated with two organellar haplotype clusters. We infer that a less stringent filtering preferentially selects for rapidly evolving lineage‐specific loci, which might better delimit lineages. In contrast, when using homozygous/organellar DNA loci the signature of a putative hybridization event in the lineage prevails over the most recent phylogenetic signal. These results show that using differing filtering strategies on GBS data could dissect the organellar and nuclear DNA phylogenetic signal and yield novel insights into relationships between closely related species.  相似文献   

17.
We previously reported the occurrence of genetically‐diverse symbiotic dinoflagellates (zooxanthellae) within and between 7 giant clam species (Tridacnidae) from the Philippines based on the algal isolates' allozyme and random amplified polymorphic DNA (RAPD) patterns. We also reported that these isolates all belong to clade A of the Symbiodinium phylogeny with identical 18S rDNA sequences. Here we extend the genetic characterization of Symbiodinium isolates from giant clams and propose that they are conspecific. We used the combined DNA sequences of the internal transcribed spacer (ITS)1, 5.8S rDNA, and ITS2 regions (rDNA‐ITS region) because the ITS1 and ITS2 regions evolve faster than 18S rDNA and have been shown to be useful in distinguishing strains of other dinoflagellates. DGGE of the most variable segment of the rDNA‐ITS region, ITS1, from clonal representatives of clades A, B, and C showed minimal intragenomic variation. The rDNA‐ITS region shows similar phylogenetic relationships between Symbiodinium isolates from symbiotic bivalves and some cnidarians as does 18S rDNA, and that there are not many different clade A species or strains among cultured zooxanthellae (CZ) from giant clams. The CZ from giant clams had virtually identical sequences, with only a single nucleotide difference in the ITS2 region separating two groups of isolates. These data suggest that there is one CZ species and perhaps two CZ strains, each CZ strain containing individuals that have diverse allozyme and RAPD genotypes. The CZ isolated from giant clams from different areas in the Philippines (21 isolates, 7 clam species), the Australian Great Barrier Reef (1 isolate, 1 clam species), Palau (8 isolates, 7 clam species), and Okinawa, Japan (1 isolate, 1 clam species) shared the same rDNA‐ITS sequences. Furthermore, analysis of fresh isolates from giant clams collected from these geographical areas shows that these bivalves also host indistinguishable clade C symbionts. These data demonstrate that conspecific Symbiodinium genotypes, particularly clade A symbionts, are distributed in giant clams throughout the Indo‐Pacific.  相似文献   

18.
The tropical Asian taxa of the species‐rich genus Solanum (Solanaceae) have been less well studied than their highly diverse New World relatives. Most of these tropical Asian species, including the cultivated brinjal eggplant/aubergine and its wild progenitor, are part of the largest monophyletic Solanum lineage, the ‘spiny solanums’ (subgenus Leptostemonum or the Leptostemonum clade). Here we present the first phylogenetic analysis of spiny solanums that includes broad sampling of the tropical Asian species, with 42 of the 56 currently recognized species represented. Two nuclear and three plastid regions [internal transcribed spacer (ITS), waxy, ndhF‐rpL32, trnS‐trnG and trnT‐trnF] were amplified and used to reconstruct phylogenetic relationships using maximum likelihood and Bayesian methods. Our analyses show that Old World spiny solanums do not resolve in a single clade, but are part of three unrelated lineages, suggesting at least three independent introductions from the New World. We identify and describe several monophyletic groups in Old World solanums that have not been previously recognized. Some of these lineages are coherent in terms of morphology and geography, whereas others show considerable morphological variation and enigmatic distribution patterns. Tropical Asia occupies a key position in the biogeography of Old World spiny solanums, with tropical Asian taxa resolved as the closest relatives of diverse groups of species from Australia and Africa.  相似文献   

19.
Lespedeza (tribe Desmodieae, Fabaceae) follows a disjunct distribution in eastern Asia and eastern North America. Phylogenetic relationships among its species and related taxa were inferred from nuclear ribosomal internal transcribed spacer (ITS) and plastid sequences (trnH‐psbA, psbK‐psbI, trnK‐matK and rpoC1). We examined 35 species of Lespedeza, two of Kummerowia and one of Campylotropis, the sole constituents of the Lespedeza group. An analysis of these data revealed that the genus Campylotropis is sister to the other two genera. However, we were unable to resolve the relationships between Kummerowia and Lespedeza in the strict consensus trees of parsimony analyses based on plastid and combined DNA data. In the genus Lespedeza, the Old World subgenus Macrolespedeza is monophyletic, whereas the transcontinental subgenus Lespedeza is paraphyletic. Monophyly of eastern Asian species and of North American species is strongly supported. Although inconsistent with the traditional classification, this phylogenetic finding is consistent with seedling morphology. Three subgroups recognized in subgenus Macrolespedeza were unresolved in our phylogenetic trees. An incongruence length difference (ILD) test indicated that the two partitions (nuclear ITS and plastid sequences) were significantly incongruent, perhaps because of hybridization between species in Lespedeza. Most of the primary clades of tribe Desmodieae are Asian, implying that the relatively few New World ones, such as those in Lespedeza, are more recently derived from Asia. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 221–235.  相似文献   

20.
Recent molecular analyses of Dictyosphaerium strains revealed a polyphyletic origin of this morphotype within the Chlorellaceae. The type species Dictyosphaerium ehrenbergianum Nägeli formed an independent lineage within the Parachlorella clade, assigning the genus to this clade. Our study focused on three different Dictyosphaerium species to resolve the phylogenetic position of remaining species. We used combined analyses of morphology; molecular data based on SSU and internally transcribed spacer region (ITS) rRNA sequences; and the comparison of the secondary structure of the SSU, ITS‐1, and ITS‐2 for species and generic delineation. The phylogenetic analyses revealed two lineages without generic assignment and two distinct clades of Dictyosphaerium‐like strains within the Parachlorella clade. One clade comprises the lineages with the epitype strain of D. ehrenbergianum Nägeli and two additional lineages that are described as new species (Dictyosphaerium libertatis sp. nov. and Dictyosphaerium lacustre sp. nov.). An emendation of the genus Dictyosphaerium is proposed. The second clade comprises the species Dictyosphaerium sphagnale Hindák and Dictyosphaerium pulchellum H. C. Wood. On the basis of phylogenetic analyses, complementary base changes, and morphology, we describe Mucidosphaerium gen. nov with the four species Mucidosphaerium sphagnale comb. nov., Mucidosphaerium pulchellum comb. nov., Mucidosphaerium palustre sp. nov., and Mucidosphaerium planctonicum sp. nov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号