首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene flow between diverging populations experiencing dissimilar ecological conditions can theoretically constrain adaptive evolution. To minimize the effect of gene flow, alleles underlying traits essential for local adaptation are predicted to be located in linked genome regions with reduced recombination. Local reduction in gene flow caused by selection is expected to produce elevated divergence in these regions. The highly divergent crab‐adapted and wave‐adapted ecotypes of the marine snail Littorina saxatilis present a model system to test these predictions. We used genome‐wide association (GWA) analysis of geometric morphometric shell traits associated with microgeographic divergence between the two L. saxatilis ecotypes within three separate sampling sites. A total of 477 snails that had individual geometric morphometric data and individual genotypes at 4,066 single nucleotide polymorphisms (SNPs) were analyzed using GWA methods that corrected for population structure among the three sites. This approach allowed dissection of the genomic architecture of shell shape divergence between ecotypes across a wide geographic range, spanning two glacial lineages. GWA revealed 216 quantitative trait loci (QTL) with shell size or shape differences between ecotypes, with most loci explaining a small proportion of phenotypic variation. We found that QTL were evenly distributed across 17 linkage groups, and exhibited elevated interchromosomal linkage, suggesting a genome‐wide response to divergent selection on shell shape between the two ecotypes. Shell shape trait‐associated loci showed partial overlap with previously identified outlier loci under divergent selection between the two ecotypes, supporting the hypothesis of diversifying selection on these genomic regions. These results suggest that divergence in shell shape between the crab‐adapted and wave‐adapted ecotypes is produced predominantly by a polygenic genomic architecture with positive linkage disequilibrium among loci of small effect.  相似文献   

2.
The Bateson–Dobzhansky–Muller model predicts that postzygotic isolation evolves due to the accumulation of incompatible epistatic interactions, but few studies have quantified the relationship between genetic architecture and patterns of reproductive divergence. We examined how the direction and magnitude of epistatic interactions in a polygenic trait under stabilizing selection influenced the evolution of hybrid incompatibilities. We found that populations evolving independently under stabilizing selection experienced suites of compensatory allelic changes that resulted in genetic divergence between populations despite the maintenance of a stable, high‐fitness phenotype. A small number of loci were then incompatible with multiple alleles in the genetic background of the hybrid and the identity of these incompatibility loci changed over the evolution of the populations. For F1 hybrids, reduced fitness evolved in a window of intermediate strengths of epistatic interactions, but F2 and backcross hybrids evolved reduced fitness across weak and moderate strengths of epistasis due to segregation variance. Strong epistatic interactions constrained the allelic divergence of parental populations and prevented the development of reproductive isolation. Because many traits with varying genetic architectures must be under stabilizing selection, our results indicate that polygenetic drift is a plausible hypothesis for the evolution of postzygotic reproductive isolation.  相似文献   

3.
Selection processes are believed to be an important evolutionary driver behind the successful establishment of nonindigenous species, for instance through adaptation for invasiveness (e.g. dispersal mechanisms and reproductive allocation). However, evidence supporting this assumption is still scarce. Genome scans have often identified loci with atypical patterns of genetic differentiation (i.e. outliers) indicative of selection processes. Using microsatellite‐ and AFLP‐based genome scans, we looked for evidence of selection following the introduction of the mollusc Crepidula fornicata. Native to the northwestern Atlantic, this gastropod has become an emblematic invader since its introduction during the 19th and 20th centuries in the northeastern Atlantic and northeastern Pacific. We examined 683 individuals from seven native and 15 introduced populations spanning the latitudinal introduction and native ranges of the species. Our results confirmed the previously documented high genetic diversity in native and introduced populations with little genetic structure between the two ranges, a pattern typical of marine invaders. Analysing 344 loci, no outliers were detected between the introduced and native populations or in the introduced range. The genomic sampling may have been insufficient to reveal selection especially if it acts on traits determined by a few genes. Eight outliers were, however, identified within the native range, underlining a genetic singularity congruent with a well‐known biogeographical break along the Florida. Our results call into question the relevance of AFLP genome scans in detecting adaptation on the timescale of biological invasions: genome scans often reveal long‐term adaptation involving numerous genes throughout the genome but seem less effective in detecting recent adaptation from pre‐existing variation on polygenic traits. This study advocates other methods to detect selection effects during biological invasions—for example on phenotypic traits, although genome scans may remain useful for elucidating introduction histories.  相似文献   

4.
Recent progress in methods for detecting adaptive population divergence in situ shows promise for elucidating the conditions under which selection acts to generate intraspecific diversity. Rapid ecological diversification is common in fishes; however, the role of phenotypic plasticity and adaptation to local environments is poorly understood. It is now possible to investigate genetic patterns to make inferences regarding phenotypic traits under selection and possible mechanisms underlying ecotype divergence, particularly where similar novel phenotypes have arisen in multiple independent populations. Here, we employed a bottom‐up approach to test for signatures of directional selection associated with divergence of beach‐ and stream‐spawning kokanee, the obligate freshwater form of sockeye salmon (Oncorhynchus nerka). Beach‐ and stream‐spawners co‐exist in many post‐glacial lakes and exhibit distinct reproductive behaviours, life‐history traits and spawning habitat preferences. Replicate ecotype pairs across five lakes in British Columbia, Canada were genotyped at 57 expressed sequence tag‐linked and anonymous microsatellite loci identified in a previous genome scan. Fifteen loci exhibited signatures of directional selection (high FST outliers), four of which were identified in multiple lakes. However, the lack of parallel genetic patterns across all lakes may be a result of: 1) an inability to detect loci truly under selection; 2) alternative genetic pathways underlying ecotype divergence in this system; and/or 3) phenotypic plasticity playing a formative role in driving kokanee spawning habitat differences. Gene annotations for detected outliers suggest pathogen resistance and energy metabolism as potential mechanisms contributing to the divergence of beach‐ and stream‐spawning kokanee, but further study is required.  相似文献   

5.
Y‐ and W‐chromosomes offer a theoretically powerful way for sexual dimorphism to evolve. Consistent with this possibility, Drosophila melanogaster Y‐chromosomes can influence gene regulation throughout the genome; particularly immune‐related genes. In order for Y‐linked regulatory variation (YRV) to contribute to adaptive evolution it must be comprised of additive genetic variance, such that variable Ys induce consistent phenotypic effects within the local gene pool. We assessed the potential for Y‐chromosomes to adaptively shape gram‐negative and gram‐positive bacterial defence by introgressing Ys across multiple genetic haplotypes from the same population. We found no Y‐linked additive effects on immune phenotypes, suggesting a restricted role for the Y to facilitate dimorphic evolution. We did find, however, a large magnitude Y by background interaction that induced rank order reversals of Y‐effects across the backgrounds (i.e. sign epistasis). Thus, Y‐chromosome effects appeared consistent within backgrounds, but highly variable among backgrounds. This large sign epistatic effect could constrain monomorphic selection in both sexes, considering that autosomal alleles under selection must spend half of their time in a male background where relative fitness values are altered. If the pattern described here is consistent for other traits or within other XY (or ZW) systems, then YRV may represent a universal constraint to autosomal trait evolution.  相似文献   

6.
Littorina saxatilis is becoming a model system for understanding the genomic basis of ecological speciation. The parallel formation of crab‐adapted ecotypes that exhibit partial reproductive isolation from wave‐adapted ecotypes has enabled genomic investigation of conspicuous shell traits. Recent genomic studies suggest that chromosomal rearrangements may enable ecotype divergence by reducing gene flow. However, the genomic architecture of traits that are divergent between ecotypes remains poorly understood. Here, we use 11,504 single nucleotide polymorphism (SNP) markers called using the recently released L. saxatilis genome to genotype 462 crab ecotype, wave ecotype and phenotypically intermediate Spanish L. saxatilis individuals with scored phenotypes. We used redundancy analysis to study the genetic architecture of loci associated with shell shape, shape corrected for size, shell size and shell ornamentation, and to compare levels of co‐association among different traits. We discovered 341 SNPs associated with shell traits. Loci associated with trait divergence between ecotypes were often located inside putative chromosomal rearrangements recently characterized in Swedish L. saxatilis. In contrast, we found that shell shape corrected for size varied primarily by geographic site rather than by ecotype and showed little association with these putative rearrangements. We conclude that genomic regions of elevated divergence inside putative rearrangements were associated with divergence of L. saxatilis ecotypes along steep environmental axes—consistent with models of adaptation with gene flow—but were not associated with divergence among the three geographical sites. Our findings support predictions from models indicating the importance of genomic regions of reduced recombination allowing co‐association of loci during ecological speciation with ongoing gene flow.  相似文献   

7.
Life‐history transitions have evolved repeatedly in numerous taxa, although the ecological and evolutionary conditions favouring such transitions in the presence of gene flow remain poorly understood. The present study aimed to disentangle the effects of isolation‐by‐distance and isolation‐by‐environment on genetic differentiation between two sympatric life‐history ecotypes. Using 14 microsatellite loci, we first characterized amphidromous and freshwater groups of Cottus asper in a high gene flow setting in the Lower Fraser River system (south‐western British Columbia, Canada) to test for the effects of habitat and geographical distance on the distribution of life‐history ecotypes. Within the main river channel, no genetic differentiation was found, whereas tributaries even close to the estuary were genetically differentiated. Partial mantel tests confirmed that genetic differentiation between river tributaries and the main channel was independent from geographical distance, with distance‐scaled migration rates indicating reduced gene flow from the main channel into the tributaries. Our results suggest that isolation‐by‐environment can play an important role for the early stage of life‐history transitions, and may promote differentiation among life‐history ecotypes despite the presence of gene flow. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 943–957.  相似文献   

8.
Understanding the genetic architecture of quantitative traits can provide insights into the mechanisms driving phenotypic evolution. Bill morphology is an ecologically important and phenotypically variable trait, which is highly heritable and closely linked to individual fitness. Thus, bill morphology traits are suitable candidates for gene mapping analyses. Previous studies have revealed several genes that may influence bill morphology, but the similarity of gene and allele effects between species and populations is unknown. Here, we develop a custom 200K SNP array and use it to examine the genetic basis of bill morphology in 1857 house sparrow individuals from a large‐scale, island metapopulation off the coast of Northern Norway. We found high genomic heritabilities for bill depth and length, which were comparable with previous pedigree estimates. Candidate gene and genomewide association analyses yielded six significant loci, four of which have previously been associated with craniofacial development. Three of these loci are involved in bone morphogenic protein (BMP) signalling, suggesting a role for BMP genes in regulating bill morphology. However, these loci individually explain a small amount of variance. In combination with results from genome partitioning analyses, this indicates that bill morphology is a polygenic trait. Any studies of eco‐evolutionary processes in bill morphology are therefore dependent on methods that can accommodate polygenic inheritance of the phenotype and molecular‐scale evolution of genetic architecture.  相似文献   

9.
10.
Gene networks are likely to govern most traits in nature. Mutations at these genes often show functional epistatic interactions that lead to complex genetic architectures and variable fitness effects in different genetic backgrounds. Understanding how epistatic genetic systems evolve in nature remains one of the great challenges in evolutionary biology. Here we combine an analytical framework with individual-based simulations to generate novel predictions about long-term adaptation of epistatic networks. We find that relative to traits governed by independently evolving genes, adaptation with epistatic gene networks is often characterized by longer waiting times to selective sweeps, lower standing genetic variation, and larger fitness effects of adaptive mutations. This may cause epistatic networks to either adapt more slowly or more quickly relative to a nonepistatic system. Interestingly, epistatic networks may adapt faster even when epistatic effects of mutations are on average deleterious. Further, we study the evolution of epistatic properties of adaptive mutations in gene networks. Our results show that adaptive mutations with small fitness effects typically evolve positive synergistic interactions, whereas adaptive mutations with large fitness effects evolve positive synergistic and negative antagonistic interactions at approximately equal frequencies. These results provide testable predictions for adaptation of traits governed by epistatic networks and the evolution of epistasis within networks.  相似文献   

11.
The intertidal snail Littorina saxatilis has repeatedly evolved two parallel ecotypes assumed to be wave adapted and predatory shore crab adapted, but the magnitude and targets of predator‐driven selection are unknown. In Spain, a small, wave ecotype with a large aperture from the lower shore and a large, thick‐shelled crab ecotype from the upper shore meet in the mid‐shore and show partial size‐assortative mating. We performed complementary field tethering and laboratory predation experiments; the first set compared the survival of two different size‐classes of the crab ecotype while the second compared the same size‐class of the two ecotypes. In the first set, the large size‐class of the crab ecotype survived significantly better than the small size‐class both on the upper shore and in the laboratory. In the second set, the small size‐class of the crab ecotype survived substantially better than that of the wave ecotype both on the upper shore and in the laboratory. Shell‐breaking predation on tethered snails was almost absent within the lower shore. In the laboratory shore crabs (Pachygrapsus marmoratus) with larger claw heights selected most strongly against the small size‐class of the crab ecotype, whereas those with medium claw heights selected most strongly against the thin‐shelled wave ecotype. Sexual maturity occurred at a much larger size in the crab ecotype than in the wave ecotype. Our results showed that selection on the upper shore for rapid attainment of a size refuge from this gape‐limited predator favors large size, thick shells, and late maturity. Model parameterization showed that size‐selective predation restricted to the upper shore resulted in the evolution of the crab ecotype despite gene flow from the wave ecotype snails living on the lower shore. These results on gape‐limited predation and previous ones showing size‐assortative mating between ecotypes suggest that size may represent a magic trait for the thick‐shelled ecotype.  相似文献   

12.
13.
Soybean [Glycine max (L.) Merr.] is an economically important crop that is grown worldwide. Sudden death syndrome (SDS), caused by Fusarium virguliforme, is one of the top yield‐limiting diseases in soybean. However, the genetic basis of SDS resistance, especially with respect to epistatic interactions, is still unclear. To better understand the genetic architecture of soybean SDS resistance, genome‐wide association and epistasis studies were performed using a population of 214 germplasm accessions and 31 914 SNPs from the SoySNP50K Illumina Infinium BeadChip. Twelve loci and 12 SNP–SNP interactions associated with SDS resistance were identified at various time points after inoculation. These additive and epistatic loci together explained 24–52% of the phenotypic variance. Disease‐resistant, pathogenesis‐related and chitin‐ and wound‐responsive genes were identified in the proximity of peak SNPs, including stress‐induced receptor‐like kinase gene 1 (SIK1), which is pinpointed by a trait‐associated SNP and encodes a leucine‐rich repeat‐containing protein. We report that the proportion of phenotypic variance explained by identified loci may be considerably improved by taking epistatic effects into account. This study shows the necessity of considering epistatic effects in soybean SDS resistance breeding using marker‐assisted and genomic selection approaches. Based on our findings, we propose a model for soybean root defense against the SDS pathogen. Our results facilitate identification of the molecular mechanism underlying SDS resistance in soybean, and provide a genetic basis for improvement of soybean SDS resistance through breeding strategies based on additive and epistatic effects.  相似文献   

14.
In perennial woody plants, the coordinated increase of stem height and diameter during juvenile growth improves competitiveness (i.e. access to light); however, the factors underlying variation in stem growth remain unknown in trees. Here, we used linkage‐linkage disequilibrium (linkage‐LD) mapping to decipher the genetic architecture underlying three growth traits during juvenile stem growth. We used two Populus populations: a linkage mapping population comprising a full‐sib family of 1,200 progeny and an association mapping panel comprising 435 unrelated individuals from nearly the entire natural range of Populus tomentosa. We mapped 311 quantitative trait loci (QTL) for three growth traits at 12 timepoints to 42 regions in 17 linkage groups. Of these, 28 regions encompassing 233 QTL were annotated as 27 segmental homology regions (SHRs). Using SNPs identified by whole‐genome re‐sequencing of the 435‐member association mapping panel, we identified significant SNPs ( 9.4 × 10?7) within 27 SHRs that affect stem growth at nine timepoints with diverse additive and dominance patterns, and these SNPs exhibited complex allelic epistasis over the juvenile growth period. Nineteen genes linked to potential causative alleles that have time‐specific or pleiotropic effects, and mostly overlapped with significant signatures of selection within SHRs between climatic regions represented by the association mapping panel. Five genes with potential time‐specific effects showed species‐specific temporal expression profiles during the juvenile stages of stem growth in five representative Populus species. Our observations revealed the importance of considering temporal genetic basis of complex traits, which will facilitate the molecular design of tree ideotypes.  相似文献   

15.
Knowledge of the underlying genetic architecture of quantitative traits could aid in understanding how they evolve. In wild populations, it is still largely unknown whether complex traits are polygenic or influenced by few loci with major effect, due to often small sample sizes and low resolution of marker panels. Here, we examine the genetic architecture of five adult body size traits in a free‐living population of Soay sheep on St Kilda using 37 037 polymorphic SNPs. Two traits (jaw and weight) show classical signs of a polygenic trait: the proportion of variance explained by a chromosome was proportional to its length, multiple chromosomes and genomic regions explained significant amounts of phenotypic variance, but no SNPs were associated with trait variance when using GWAS. In comparison, genetic variance for leg length traits (foreleg, hindleg and metacarpal) was disproportionately explained by two SNPs on chromosomes 16 (s23172.1) and 19 (s74894.1), which each explained >10% of the additive genetic variance. After controlling for environmental differences, females heterozygous for s74894.1 produced more lambs and recruits during their lifetime than females homozygous for the common allele conferring long legs. We also demonstrate that alleles conferring shorter legs have likely entered the population through a historic admixture event with the Dunface sheep. In summary, we show that different proxies for body size can have very different genetic architecture and that dense SNP helps in understanding both the mode of selection and the evolutionary history at loci underlying quantitative traits in natural populations.  相似文献   

16.
Hybrid zones of ecologically divergent populations are ideal systems to study the interaction between natural selection and gene flow during the initial stages of speciation. Here, we perform an amplified fragment length polymorphism (AFLP) genome scan in parallel hybrid zones between divergent ecotypes of the marine snail Littorina saxatilis, which is considered a model case for the study of ecological speciation. Ridged‐Banded (RB) and Smooth‐Unbanded (SU) ecotypes are adapted to different shore levels and microhabitats, although they present a sympatric distribution at the mid‐shore where they meet and mate (partially assortatively). We used shell morphology, outlier and nonoutlier AFLP loci from RB, SU and hybrid specimens captured in sympatry to determine the level of phenotypic and genetic introgression. We found different levels of introgression at parallel hybrid zones and nonoutlier loci showed more gene flow with greater phenotypic introgression. These results were independent from the phylogeography of the studied populations, but not from the local ecological conditions. Genetic variation at outlier loci was highly correlated with phenotypic variation. In addition, we used the relationship between genetic and phenotypic variation to estimate the heritability of morphological traits and to identify potential Quantitative Trait Loci to be confirmed in future crosses. These results suggest that ecology (exogenous selection) plays an important role in this hybrid zone. Thus, ecologically based divergent natural selection is responsible, simultaneously, for both ecotype divergence and hybridization. On the other hand, genetic introgression occurs only at neutral loci (nonoutliers). In the future, genome‐wide studies and controlled crosses would give more valuable information about this process of speciation in the face of gene flow.  相似文献   

17.
Sex‐biased genes—genes that are differentially expressed within males and females—are nonrandomly distributed across animal genomes, with sex chromosomes and autosomes often carrying markedly different concentrations of male‐ and female‐biased genes. These linkage patterns are often gene‐ and lineage‐dependent, differing between functional genetic categories and between species. Although sex‐specific selection is often hypothesized to shape the evolution of sex‐linked and autosomal gene content, population genetics theory has yet to account for many of the gene‐ and lineage‐specific idiosyncrasies emerging from the empirical literature. With the goal of improving the connection between evolutionary theory and a rapidly growing body of genome‐wide empirical studies, we extend previous population genetics theory of sex‐specific selection by developing and analyzing a biologically informed model that incorporates sex linkage, pleiotropy, recombination, and epistasis, factors that are likely to vary between genes and between species. Our results demonstrate that sex‐specific selection and sex‐specific recombination rates can generate, and are compatible with, the gene‐ and species‐specific linkage patterns reported in the genomics literature. The theory suggests that sexual selection may strongly influence the architectures of animal genomes, as well as the chromosomal distribution of fixed substitutions underlying sexually dimorphic traits.  相似文献   

18.
Adaptation to novel environments arises either from new beneficial mutations or by utilizing pre‐existing genetic variation. When standing variation is used as the source of new adaptation, fitness effects of alleles may be altered through an environmental change. Alternatively, changes in epistatic genetic backgrounds may convert formerly neutral mutations into beneficial alleles in the new genetic background. By extending the coalescent theory to describe the genealogical histories of two interacting loci, I here investigated the hitchhiking effect of epistatic selection on the amount and pattern of sequence diversity at the linked neutral regions. Assuming a specific form of epistasis between two new mutations that are independently neutral, but together form a coadapted haplotype, I demonstrate that the footprints of epistatic selection differ markedly between the interacting loci depending on the order and relative timing of the two mutational events, even though both mutations are equally essential for the formation of an adaptive gene combination. Our results imply that even when neutrality tests could detect just a single instance of adaptive substitution, there may, in fact, be numerous other hidden mutations that are left undetected, but still play indispensable roles in the evolution of a new adaptation. We expect that the integration of the coalescent framework into the general theory of polygenic inheritance would clarify the connection between factors driving phenotypic evolution and their consequences on underlying DNA sequence changes, which should further illuminate the evolutionary foundation of coadapted systems.  相似文献   

19.
20.
Behavioural syndromes, that is correlated behaviours, may be a result from adaptive correlational selection, but in a new environmental setting, the trait correlation might act as an evolutionary constraint. However, knowledge about the quantitative genetic basis of behavioural syndromes, and the stability and evolvability of genetic correlations under different ecological conditions, is limited. We investigated the quantitative genetic basis of correlated behaviours in the freshwater isopod Asellus aquaticus. In some Swedish lakes, A. aquaticus has recently colonized a novel habitat and diverged into two ecotypes, presumably due to habitat‐specific selection from predation. Using a common garden approach and animal model analyses, we estimated quantitative genetic parameters for behavioural traits and compared the genetic architecture between the ecotypes. We report that the genetic covariance structure of the behavioural traits has been altered in the novel ecotype, demonstrating divergence in behavioural correlations. Thus, our study confirms that genetic correlations behind behaviours can change rapidly in response to novel selective environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号