首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Hybridization between invasive and native species, a significant threat to worldwide biodiversity, is predicted to increase due to climate‐induced expansions of invasive species. Long‐term research and monitoring are crucial for understanding the ecological and evolutionary processes that modulate the effects of invasive species. Using a large, multidecade genetics dataset (= 582 sites, 12,878 individuals) with high‐resolution climate predictions and extensive stocking records, we evaluate the spatiotemporal dynamics of hybridization between native cutthroat trout and invasive rainbow trout, the world's most widely introduced invasive fish, across the Northern Rocky Mountains of the United States. Historical effects of stocking and contemporary patterns of climatic variation were strongly related to the spread of hybridization across space and time. The probability of occurrence, extent of, and temporal changes in hybridization increased at sites in close proximity to historical stocking locations with greater rainbow trout propagule pressure, warmer water temperatures, and lower spring precipitation. Although locations with warmer water temperatures were more prone to hybridization, cold sites were not protected from invasion; 58% of hybridized sites had cold mean summer water temperatures (<11°C). Despite cessation of stocking over 40 years ago, hybridization increased over time at half (50%) of the locations with long‐term data, the vast majority of which (74%) were initially nonhybridized, emphasizing the chronic, negative impacts of human‐mediated hybridization. These results show that effects of climate change on biodiversity must be analyzed in the context of historical human impacts that set ecological and evolutionary trajectories.  相似文献   

2.
3.
Introgressive hybridization between native and introduced species is a growing conservation concern. For native cutthroat trout and introduced rainbow trout in western North America, this process is thought to lead to the formation of hybrid swarms and the loss of monophyletic evolutionary lineages. Previous studies of this phenomenon, however, indicated that hybrid swarms were rare except when native and introduced forms of cutthroat trout co‐occurred. We used a panel of 86 diagnostic, single nucleotide polymorphisms to evaluate the genetic composition of 3865 fish captured in 188 locations on 129 streams distributed across western Montana and northern Idaho. Although introgression was common and only 37% of the sites were occupied solely by parental westslope cutthroat trout, levels of hybridization were generally low. Of the 188 sites sampled, 73% contained ≤5% rainbow trout alleles and 58% had ≤1% rainbow trout alleles. Overall, 72% of specimens were nonadmixed westslope cutthroat trout, and an additional 3.5% were nonadmixed rainbow trout. Samples from seven sites met our criteria for hybrid swarms, that is, an absence of nonadmixed individuals and a random distribution of alleles within the sample; most (6/7) were associated with introgression by Yellowstone cutthroat trout. In streams with multiple sites, upstream locations exhibited less introgression than downstream locations. We conclude that although the widespread introduction of nonnative trout within the historical range of westslope cutthroat trout has increased the incidence of introgression, sites containing nonadmixed populations of this taxon are common and broadly distributed.  相似文献   

4.
Hybridization between diverged taxa tests the strength of reproductive isolation and can therefore reveal mechanisms of reproductive isolation. However, it remains unclear how consistent reproductive isolation is across species' ranges and to what extent reproductive isolation might remain polymorphic as species diverge. To address these questions, we compared outcomes of hybridization across species pairs of Catostomus fishes in three rivers in the Upper Colorado River basin, where an introduced species, C. commersoni, hybridizes with at least two native species, C. discobolus and C. latipinnis. We observed substantial heterogeneity in outcomes of hybridization, both between species pairs and across geographically separate rivers within each species pair. We also observed hybridization of additional related species with our focal species, suggesting that reproductive isolation in this group involves interactions of multiple evolutionary and ecological factors. These findings suggest that a better understanding of the determinants of variation in reproductive isolation is needed and that studies of reproductive isolation in hybrids should consider how the dynamics and mechanisms of reproductive isolation vary over ecological space and over evolutionary time. Our results also have implications for the conservation and management of native catostomids in the Colorado River basin. Heterogeneity in outcomes of hybridization suggests that the threat posed by hybridization and genetic introgression to the persistence of native species probably varies with extent of reproductive isolation, both across rivers and across species pairs.  相似文献   

5.
While hybridization has been reported for a large number of primate taxa, there is a general lack of data on hybrid morphology for wild individuals with known genetic ancestry. A confirmed hybrid zone for the closely related Neotropical primates Alouatta palliata and A. pigra has provided a unique opportunity to study primate hybrid morphological variation. Here we used molecular evidence based on mitochondrial, Y‐chromosome, and autosomal data to assess hybrid ancestry. We conducted univariate and multivariate statistical comparisons of morphometric data collected from individuals both outside and within the hybrid zone in Tabasco, Mexico. Our results show that of all the hybrids detected (N = 128), only 12% of them were approximately genetically intermediate, and none of them were first generation hybrids. Univariate pairwise comparisons among parental individuals, multigenerational backcrossed hybrids, and intermediate hybrids showed that overall, multigenerational backcrossed hybrids resemble the parental species with which they share most of their alleles. Conversely, intermediates were highly variable. Similarly, principal component analysis depicts an overlap between the parental species and their backcrosses when considering overall morphological differences. Finally, discriminant function analysis of the morphological variables was overall unreliable for classifying individuals into their assigned genotypic classes. Taken together, our results suggest that primate natural hybridization studies should incorporate molecular methods for determining ancestry, because morphology may not always be a reliable indicator of hybrid status. Hybrid zones could comprise a large number of multigenerational backcrossed hybrids that are indistinguishable from the parental species. The implications for studying hybridization in the primate fossil record are discussed. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Throughout its native range, the Yellowstone cutthroat trout (YCT), Oncorhynchus clarkii bouvieri, is declining dramatically in both abundance and distribution as a result of introgression with introduced rainbow trout (RBT), O. mykiss. We sampled over 1,200 trout from the South Fork of the Snake River (SFSR) watershed, in southeastern Idaho and western Wyoming, and measured the extent of introgression of RBT genes into native gene pools of YCT using seven species-specific, co-dominant nuclear genetic markers. We also used mitochondrial DNA (mtDNA) haplotype differences between the two parental trout species to determine the directionality of the hybridization. We found low levels of RBT introgression (only 7% of sampled individuals had one or more RBT alleles) into YCT gene pools, with the majority of hybrids (78%) occurring in mainstem localities of the SFSR and in lower elevation reaches of certain tributaries. Hybridization was bidirectional with respect to mtDNA haplotype, but the majority of hybrids (75%) had YCT maternal haplotypes, indicative of the greater proportion (90%) of YCT-genotypes in the SFSR watershed. The primary factor influencing the geographic distribution of RBT introgressed individuals was fluvial distance from localities of stocking origin. To a lesser extent, elevation, also influenced the distribution of hybrid genotypes, with several entire tributaries and all upper elevation reaches within tributaries harboring only YCT-genotypes. Important management implications of the study suggest targeting particular tributaries and upper reaches within tributaries for YCT protection and exclusion of RBT hybrid colonization.  相似文献   

7.
Interspecific hybridization represents a dynamic evolutionary phenomenon and major conservation problem in salmonid fishes. In this study we used amplified fragment length polymorphisms (AFLP) and mitochondrial DNA (mtDNA) markers to describe the extent and characterize the pattern of hybridization and introgression between coastal rainbow trout (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki). Hybrid individuals were initially identified using principle coordinate analysis of 133 polymorphic AFLP markers. Subsequent analysis using 23 diagnostic AFLP markers revealed the presence of F1, rainbow trout backcross, cutthroat trout backcross and later-generation hybrids. mtDNA analysis demonstrated equal numbers of F1 hybrids with rainbow and cutthroat trout mtDNA indicating reciprocal mating of the parental types. In contrast, rainbow and cutthroat trout backcross hybrids always exhibited the mtDNA from the recurrent parent, indicating a male hybrid mating with a pure female. This study illustrates the usefulness of the AFLP technique for generating large numbers of species diagnostic markers. The pattern of hybridization raises many questions concerning the existence and action of reproductive isolating mechanisms between these two species. Our findings are consistent with the hypothesis that introgression between anadromous populations of coastal rainbow and coastal cutthroat trout is limited by an environment-dependent reduction in hybrid fitness.  相似文献   

8.
Hybridization between sympatric species provides unique opportunities to examine the contrast between mechanisms that promote hybridization and maintain species integrity. We surveyed hybridization between sympatric coastal steelhead (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki) from two streams in Washington State, Olsen Creek (256 individuals sampled) and Jansen Creek (431 individuals sampled), over a 3-year period. We applied 11 O. mykiss-specific nuclear markers, 11 O. c. clarki-specific nuclear markers and a mitochondrial DNA marker to assess spatial partitioning among species and hybrids and determine the directionality of hybridization. F1 and post-F1 hybrids, respectively, composed an average of 1.2% and 33.6% of the population sampled in Jansen Creek, and 5.9% and 30.4% of the population sampled in Olsen Creek. A modest level of habitat partitioning among species and hybrids was detected. Mitochondrial DNA analysis indicated that all F1 hybrids (15 from Olsen Creek and five from Jansen Creek) arose from matings between steelhead females and cutthroat males implicating a sneak spawning behaviour by cutthroat males. First-generation cutthroat backcrosses contained O. c. clarki mtDNA more often than expected suggesting natural selection against F1 hybrids. More hybrids were backcrossed toward cutthroat than steelhead and our results indicate recurrent hybridization within these creeks. Age analysis demonstrated that hybrids were between 1 and 4 years old. These results suggest that within sympatric salmonid hybrid zones, exogenous processes (environmentally dependent factors) help to maintain the distinction between parental types through reduced fitness of hybrids within parental environments while divergent natural selection promotes parental types through distinct adaptive advantages of parental phenotypes.  相似文献   

9.
Hybridization of cutthroat trout and steelhead/rainbow trout is ubiquitous where they are sympatric, either naturally or owing to introductions. The ability to detect hybridization and introgression between the two species would be greatly improved by the development of more diagnostic markers validated across the two species' many phylogenetic lineages. Here, we describe 81 novel genetic markers and associated assays for discriminating the genomes of these sister species. These diagnostic nucleotide polymorphisms were discovered by sequencing of rainbow trout expressed sequence tags (ESTs) in a diverse panel of both cutthroat trout and steelhead/rainbow trout. The resulting markers were validated in a large number of lineages of both species, including all extant subspecies of cutthroat trout and most of the lineages of rainbow trout that are found in natural sympatry with cutthroat trout or used in stocking practices. Most of these markers (79%) distinguish genomic regions for all lineages of the two species, but a small number do not reliably diagnose coastal, westslope and/or other subspecies of cutthroat trout. Surveys of natural populations and hatchery strains of trout and steelhead found rare occurrences of the alternative allele, which may be due to either previous introgression or shared polymorphism. The availability of a large number of genetic markers for distinguishing genomic regions originating in these sister species will allow the detection of both recent and more distant hybridization events, facilitate the study of the evolutionary dynamics of hybridization and provide a powerful set of tools for the conservation and management of both species.  相似文献   

10.
Docker MF  Dale A  Heath DD 《Molecular ecology》2003,12(12):3515-3521
The frequency of hybridization between cutthroat (Onchorhynchus clarki clarki) and rainbow (O. mykiss irideus) trout from coastal habitats in British Columbia, Canada, was examined in seven populations where the two species are sympatric with no history of rainbow trout stocking and compared with areas where native rainbow trout populations have been supplemented with hatchery fish (three populations). Four nuclear markers were used to identify each species and interspecific hybrids and one mitochondrial marker showed the direction of gene exchange between species. The frequency of hybrids was significantly higher (Fisher exact test, P < 0.001) in river systems where hatchery rainbow trout have been introduced (50.6% hybrids) than in populations where the two species naturally co-occur without supplementation (9.9% hybrids).  相似文献   

11.
Hybridization with introduced taxa is one of the major threats to the persistence of native biodiversity. The westslope cutthroat trout (Oncorhynchus clarkii lewisi) is found in southeastern British Columbia and southwestern Alberta, Canada, and adjacent areas of Montana, Idaho, and Washington State, USA. Through much of this area, native populations are threatened by hybridization with introduced rainbow trout (O. mykiss). We surveyed 159 samples comprising over 5,000 fish at 10 microsatellite DNA loci to assess the level of admixture between native westslope cutthroat trout (wsct) and introduced rainbow trout in southwestern Alberta. Admixture levels (qwsct of 0 = pure rainbow trout, qwsct of 1.0 = pure westslope cutthroat trout) ranged from <0.01 to 0.99 and averaged from 0.72 to 0.99 across seven drainage areas. Regression tree analyses indicated that water temperature, elevation, distance to the nearest stocking site, and distance to the nearest railway line were significant components of a model that explained 34 % of the variation across sites in qwsct across 58 localities for which habitat variables were available. Partial dependence plots indicated that admixture with rainbow trout increased with increasing water temperature and distance to the nearest railway line, but decreased with increasing elevation and distance from stocking site to sample site. Our results support the hypothesis that westslope cutthroat trout may be less susceptible to hybridization with rainbow trout in colder, higher elevation streams, and illustrate the interaction between abiotic and anthropogenic factors in influencing hybridization between native and introduced taxa.  相似文献   

12.
Anthropogenic hybridization is an increasing conservation threat worldwide. In South Africa, recent hybridization is threatening numerous ungulate taxa. For example, the genetic integrity of the near‐threatened bontebok (Damaliscus pygargus pygargus) is threatened by hybridization with the more common blesbok (D. p. phillipsi). Identifying nonadmixed parental and admixed individuals is challenging based on the morphological traits alone; however, molecular analyses may allow for accurate detection. Once hybrids are identified, population simulation software may assist in determining the optimal conservation management strategy, although quantitative evaluation of hybrid management is rarely performed. In this study, our objectives were to describe species‐wide and localized rates of hybridization in nearly 3,000 individuals based on 12 microsatellite loci, quantify the accuracy of hybrid assignment software (STRUCTURE and NEWHYBRIDS), and determine an optimal threshold of bontebok ancestry for management purposes. According to multiple methods, we identified 2,051 bontebok, 657 hybrids, and 29 blesbok. More than two‐thirds of locations contained at least some hybrid individuals, with populations varying in the degree of introgression. HYBRIDLAB was used to simulate four generations of coexistence between bontebok and blesbok, and to optimize a threshold of ancestry, where most hybrids will be detected and removed, and the fewest nonadmixed bontebok individuals misclassified as hybrids. Overall, a threshold Q‐value (admixture coefficient) of 0.90 would remove 94% of hybrid animals, while a threshold of 0.95 would remove 98% of hybrid animals but also 8% of nonadmixed bontebok. To this end, a threshold of 0.90 was identified as optimal and has since been implemented in formal policy by a provincial nature conservation agency. Due to widespread hybridization, effective conservation plans should be established and enforced to conserve native populations that are genetically unique.  相似文献   

13.
Coral reefs are highly diverse ecosystems, where numerous closely related species often coexist. How new species arise and are maintained in these high geneflow environments have been long‐standing conundrums. Hybridization and patterns of introgression between sympatric species provide a unique insight into the mechanisms of speciation and the maintenance of species boundaries. In this study, we investigate the extent of hybridization between two closely related species of coral reef fish: the common coral trout (Plectropomus leopardus) and the bar‐cheek coral trout (Plectropomus maculatus). Using a complementary set of 25 microsatellite loci, we distinguish pure genotype classes from first‐ and later‐generation hybrids, identifying 124 interspecific hybrids from a collection of 2,991 coral trout sampled in inshore and mid‐shelf reefs of the southern Great Barrier Reef. Hybrids were ubiquitous among reefs, fertile and spanned multiple generations suggesting both ecological and evolutionary processes are acting to maintain species barriers. We elaborate on these finding to investigate the extent of genomic introgression and admixture from 2,271 SNP loci recovered from a ddRAD library of pure and hybrid individuals. An analysis of genomic clines on recovered loci indicates that 261 SNP loci deviate from a model of neutral introgression, of which 132 indicate a pattern of introgression consistent with selection favouring both hybrid and parental genotypes. Our findings indicate genome‐wide, bidirectional introgression between two sympatric species of coral reef fishes and provide further support to a growing body of evidence for the role of hybridization in the evolution of coral reef fishes.  相似文献   

14.
Resolving evolutionary relationships and establishing population structure depends on molecular diagnosability that is often limited for closely related taxa. Here, we use 3,200 ddRAD‐seq loci across 290 mallards, American black ducks, and putative hybrids to establish population structure and estimate hybridization rates. We test between traditional assignment probability and accumulated recombination events based analyses to assign hybrids to generational classes. For hybrid identification, we report the distribution of recombination events complements ADMIXTURE simulation by extending resolution past F4 hybrid status; however, caution against hybrid assignment based on accumulated recombination events due to an inability to resolve F1 hybrids. Nevertheless, both analyses suggest that there are relatively few backcrossed stages before a lineage's hybrid ancestry is lost and the offspring are effectively parental again. We conclude that despite high rates of observed interspecific hybridization between mallards and black ducks in the middle part of the 20th century, our results do not support the predicted hybrid swarm. Conversely, we report that mallard samples genetically assigned to western and non‐western clusters. We indicate that these non‐western mallards likely originated from game‐farm stock, suggesting landscape level gene flow between domestic and wild conspecifics.  相似文献   

15.
Introgressive hybridization occurs when closely related taxa overlap in distribution and is often associated with historically isolated populations coming into contact as a result of anthropogenic disturbance. There is evolutionary and conservation interest in detecting hybridization to determine its implications on future species composition, especially for threatened and recovering taxa such as subantarctic (Arctocephalus tropicalis) and Antarctic (A. gazella) fur seals, which were driven to the brink of extinction by human exploitation. Hybridization between these species has been reported at two locations and they breed sympatrically at a third site, Iles Crozet. While hybrid individuals have previously been identified based on phenotype, individuals can be difficult to classify based on these characteristics alone. Genotypic hybrid identification has been successful in several species, including fur seals. In this study we conducted an assignment test using microsatellite data to identify hybrids and to measure the frequency of hybridization at Iles Crozet. Samples were collected from 372 individuals and screened with 6 polymorphic microsatellite markers. MtDNA genotypes were also determined for individuals identified as hybrids or backcrosses based on microsatellite genotype. Phenotype, microsatellite and mtDNA genotype were then compared in order to identify hybrids. The results indicate that 1% of the population have hybrid genotypes and at a minimum, 2.4% of the population are backcrossed to parental species. We found that the two species are genetically distinct from one another and given the low rate of hybridization it is unlikely that they will fuse. These results suggest that there is a mechanism for species recognition that acts as a barrier to hybridization. It therefore seems unlikely that fur seals are threatened by significant introgression. Further investigation of fur seal mating systems would provide valuable insight into the mechanisms governing hybridization and species recognition in mate choice.  相似文献   

16.
Assessing the immediate and long‐term evolutionary consequences of human‐mediated hybridization is of major concern for conservation biology. Several studies have documented how selection in interaction with recombination modulates introgression at a genome‐wide scale, but few have considered the dynamics of this process within and among chromosomes. Here, we used an exploited freshwater fish, the brook charr (Salvelinus fontinalis), for which decades of stocking practices have resulted in admixture between wild populations and an introduced domestic strain, to assess both the temporal dynamics and local chromosomal variation in domestic ancestry. We provide a detailed picture of the domestic ancestry patterns across the genome using about 33,000 mapped single nucleotide polymorphisms genotyped in 611 individuals from 24 supplemented populations. For each lake, we distinguished early‐ and late‐generation hybrids using information regarding admixture tracts. To assess the selective outcomes following admixture we then evaluated the relationship between recombination and admixture proportions at three different scales: the whole genome, chromosomes and within 2‐Mb windows. This allowed us to detect a wide range of evolutionary mechanisms varying along the genome, as reflected by the finding of favoured or disfavoured introgression of domestic haplotypes. Among these, the main factor modulating local ancestry was probably the presence of deleterious recessive mutations in the wild populations, which can be efficiently hidden to selection in the presence of long admixture tracts. Overall, our results emphasize the relevance of taking into consideration local ancestry information to assess both the temporal and the chromosomal variation in local admixture ancestry toward better understanding post‐hybridization evolutionary outcomes.  相似文献   

17.
Hybridization among conspecifics in native and introduced habitats has important implications for biological invasions in new ecosystems. Bighead (Hypophthalmichthys nobilis) and silver carp (H. molitrix) are genetically isolated and occur in sympatry within their native range. Following their introduction to North America, however, introgressant hybrids have been reported throughout their expanded range within the Mississippi River Basin (MRB). The extent of introgression, both spatially and generationally, is largely unknown. Therefore, we examined mixed‐species populations from across the MRB to characterize the extent of interspecific gene flow. We assayed 2798 individuals from nine locations with a suite of species‐diagnostic SNPs (57 nuclear and one mitochondrial). Forty‐four per cent (n = 1244) of individuals displayed hybrid genotypes. Moreover, the composition of hybrid genotypes varied among locations and represented complex hybrid swarms with multiple generations of gene flow. Introgressive hybrids were identified from all locations, were bidirectional and followed a bimodal distribution consisting primarily of parental or parental‐like genotypes and phenotypes. All described hybrid categories were present among individuals from 1999 to 2008, with parents and later‐generation backcrosses representing the largest proportion of individuals among years. Our mitochondrial SNP (COII), tested on a subset of 730 individuals, revealed a silver carp maternal bias in 13 of 21 (62%) F1 hybrids, in all silver carp backcrosses, and maintained throughout many of the bighead carp backcrosses. The application of this suite of diagnostic markers and the spatial coverage permits a deeper examination of the complexity in hybrid swarms between two invasive, introduced species.  相似文献   

18.
Hybridization and gene flow between diverging lineages are increasingly recognized as common evolutionary processes, and their consequences can vary from hybrid breakdown to adaptive introgression. We have previously found a population of wood ant hybrids between Formica aquilonia and F. polyctena that shows antagonistic effects of hybridization: females with introgressed alleles show hybrid vigour, whereas males with the same alleles show hybrid breakdown. Here, we investigate whether hybridization is a general phenomenon in this species pair and analyse 647 worker samples from 16 localities in Finland using microsatellite markers and a 1200‐bp mitochondrial sequence. Our results show that 27 sampled nests contained parental‐like gene pools (six putative F. polyctena and 21 putative F. aquilonia) and all remaining nests (69), from nine localities, contained hybrids of varying degrees. Patterns of genetic variation suggest these hybrids arise from several hybridization events or, instead, have backcrossed to the parental gene pools to varying extents. In contrast to expectations, the mitochondrial haplotypes of the parental species were not randomly distributed among the hybrids. Instead, nests that were closer to parental‐like F. aquilonia for nuclear markers preferentially had F. polyctena's mitochondria and vice versa. This systematic pattern suggests there may be underlying selection favouring cytonuclear mismatch and hybridization. We also found a new hybrid locality with strong genetic differences between the sexes similar to those predicted under antagonistic selection on male and female hybrids. Further studies are needed to determine the selective forces that act on male and female genomes in these newly discovered hybrids.  相似文献   

19.
Restriction site variation in the Ikaros gene intron was used to assess the incidence of westslope cutthroat trout ( Oncorhynchus clarki lewisi ), rainbow trout ( O. mykiss ) and interspecific hybrids at 11 localities among eight streams tributary to the upper Kootenay River system in south-eastern British Columbia, Canada. Out of 356 fish assayed by this technique, hybrids ( n =16) were found at seven of the 11 sites across five different streams. Rainbow trout ( n =6) were found at two of the 11 sites. Analysis of hybrids with a second genetic marker (heat shock 71 intron) indicated that most represented either backcrosses to both westslope cutthroat and rainbow trout, or post F1 hybrids. Mitochondrial DNA analysis indicated that hybrid matings occur between male rainbow trout and female westslope cutthroat trout and vice versa. Comparison of present hybridization in five tributaries relative to an allozyme-based analysis in the mid-1980s, that documented hybrids in only a single tributary of seven that were common to the two studies, suggests that hybridization and introgression has increased in upper Kootenay River tributaries. The present analysis is a conservative estimate of genetic interaction between the species because introgression was not tested in the majority of samples. Identification of genetically pure westslope cutthroat trout populations, and why they might be resistant to introgression from rainbow trout, are crucial conservation priorities for this unique subspecies of cutthroat trout.  相似文献   

20.
Hybridization with introduced species represents a serious threat to the persistence of many native fish populations. Brook trout (Salvelinus fontinalis) have been introduced extensively throughout the native range of bull trout (S. confluentus) and hybridization has been documented in several systems where they co-exist and is seen as a significant threat to the persistence of bull trout populations. We identified a group of diagnostic microsatellite loci to differentiate bull trout and brook trout and then used these loci to examine the spatial distribution of hybrids in the Malheur River basin, Oregon USA. In random samples of approximately 100 fish from each of three creeks we identified 181 brook trout, 112 bull trout and 14 hybrids. Although bull trout, brook trout and hybrids were found in all three creeks, they were not evenly distributed; brook trout were primarily found in the lower sections of the creeks, bull trout further upstream, and hybrids in the areas of the greatest overlap. One creek with a population of brook trout in a headwater lake provided an exception to this pattern; brook trout were found distributed throughout the creek downstream of the lake. Several post-F1 hybrids were identified suggesting that hybrids are reproducing in the Malher River Basin. Mitochondrial DNA analysis indicated that both female bull trout and brook trout are involved in hybridization events. Analysis of population structure suggested that brook trout have established multiple spawning populations within the Malheur system. Data presented in this study suggest that relative abundance of brook trout and habitat quality are important factors to consider when evaluating the threat of hybridization to bull trout populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号