首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Mouse urine contains major urinary proteins (MUPs) that are not found in human urine. Therefore, even healthy mice exhibit proteinuria, unlike healthy humans, making it challenging to use mice as models for human diseases. It was also unknown whether dipsticks for urinalysis could measure protein concentrations precisely in urine containing MUPs. To resolve these problems, we produced MUP-knockout (Mup-KO) mice by removing the Mup gene cluster using Cas9 proteins and two guide RNAs and characterized the urinary proteins in these mice. We measured the urinary protein concentrations in Mup-KO and wild-type mice using a protein quantitation kit and dipsticks. We also examined the urinary protein composition using SDS-PAGE and two-dimensional electrophoresis (2DE). The urinary protein concentration was significantly lower (P<0.001) in Mup-KO mice (17.9 ± 1.8 mg/dl, mean ± SD, n=3) than in wild-type mice (73.7 ± 8.2 mg/dl, n=3). This difference was not reflected in the dipstick values, perhaps due to the low sensitivity to MUPs. This suggests that dipsticks have limited ability to measure changes in MUPs with precision. SDS-PAGE and 2DE confirmed that Mup-KO mice, like humans, had no MUPs in their urine, whereas wild-type mice had abundant MUPs in their urine. The absence of the masking effect of MUPs in 2DE would enable clear comparisons of urinary proteins, especially low-molecular-weight proteins. Thus, Mup-KO mice may provide a useful model for human urinalysis.  相似文献   

3.
Sexual signals are expected to be costly to produce and maintain, thus ensuring that only males in good condition can sustain their expression at high levels. When males reach senescence they lose physiological function and condition, which could constrain their ability to invest in costly sexual signals, decreasing their attractiveness to mates. Furthermore, females may have evolved mating preferences that cause avoidance of senesced males to enhance fertilization success and viability of offspring. Among mammals, the size of antlers and other weapons can decrease with senescence, but changes in olfactory sexual signals have been largely unexplored. We examined changes in olfactory signals with senescence in house mice (Mus musculus domesticus), where males excrete volatile and involatile molecules in scent marks that elicit behavioural and priming responses in females. Compared to middle-aged males, the urine of senesced males contained a lower concentration of involatile signalling proteins (major urinary proteins or MUPs), and associated volatiles that bind to these proteins. The reduced intensity of male scent will affect the longevity of scent signals deposited in the environment and, accordingly, females were less attracted to urine from senesced males deposited 12 h previously. Females also discriminated against senesced males encountered behind a mesh barrier. These results reveal that investment in olfactory signalling is reduced during senescence and suggest that senesced males and their scent may be less attractive to females.  相似文献   

4.
5.
Segregation of sperm abnormality level and the pattern of major urinary proteins (MUPs) were investigated in F2 and B1 hybrid males obtained from crosses involving two contrasting inbred strains of mice: CBA/Kw (Mup-1a1a, 3.3% abnormal sperm) and C57BL/Kw (Mup-1b1b, 21.9% abnormal sperm). In the progeny of both crosses mean levels of abnormal spermatozoa were significantly higher for males typed as Mup-1b1b than for heterozygous Mup-1a1b males. Moreover, all F2 hybrid males showing very high percentages of abnormal sperm were Mup-1b1b homozygotes. Similarly, among B1 males with a high level of deformed spermatozoa, a statistically significant majority were Mup-1b1b genotypes. Our results suggest that at least two genes which influence sperm abnormality level are segregating in these crosses. Both appear to be recessive for high sperm abnormality level, and one shows weak linkage to Mup-1 on chromosome 4.  相似文献   

6.
Major urinary proteins (Mups) are important for rodent scent communication and sexual behaviour. Recent evidence suggests that Mup1 may be regulated by fasting and re-feeding (RF). However, other Mup isoforms are poorly investigated, and data on the impact of long-term dietary restriction (DR) and ad libitum RF on Mup expression are missing. We investigated the effects of long-term 25 per cent DR and subsequent RF on Mup expression in male C57BL6 mice. DR significantly decreased Mup gene expression, hepatic and urinary protein levels compared with ad libitum (AL) fed control mice, with the greatest downregulation found for Mup5 expression. The decline in Mup expression was inverted by six months of RF. Because of inhibitory glucocorticoid response elements in the genomic sequence of the Mup5 gene, the observed inverse correlation of nuclear glucocorticoid receptor levels with Mup expression in response to DR and subsequent RF is a possible regulatory mechanism. Additionally, gene-expression-inhibiting histone deacetylation (H3K9) occurred in the region of the Mup5 gene in response to DR. We assume that Mup may act as a molecular switch linking nutritional status to sexual behaviour of mice, and thereby regulating male fertility and reproduction in response to food supply.  相似文献   

7.
As an ancient clonal root and leaf crop, taro (Colocasia esculenta, Araceae) is highly polymorphic with uncertain genetic and geographic origins. We explored chloroplast DNA diversity in cultivated and wild taros, and closely related wild taxa, and found cultivated taro to be polyphyletic, with tropical and temperate clades that appear to originate in Southeast Asia sensu lato. A third clade was found exclusively in wild populations from Southeast Asia to Australia and Papua New Guinea. Our findings do not support the hypothesis of taro domestication in Papua New Guinea, despite archaeological evidence for early use or cultivation there, and the presence of apparently natural wild populations in the region (Australia and Papua New Guinea).  相似文献   

8.
It is often assumed that inbreeding reduces resistance to pathogens, yet there are few experimental tests of this idea in vertebrates, and no tests for the effects of moderate levels of inbreeding more commonly found in nature. We mated wild-derived mice with siblings or first cousins and compared the resistance of their offspring to Salmonella infection with outbred controls under laboratory and seminatural conditions. In the laboratory, full-sib inbreeding reduced resistance to Salmonella and survivorship, whereas first-cousin inbreeding had no detectable effects. In competitive population enclosures, we found that first-cousin inbreeding reduced male fitness by 57% in infected vs. only 34% in noninfected control populations. Our study provides experimental evidence that inbreeding reduces resistance and ability to survive pathogenic infection, and moreover, it shows that even moderate inbreeding can cause significant fitness declines under naturalistic conditions of social stress, and especially with exposure to infectious agents.  相似文献   

9.
Invasions and anthropogenic disturbances challenge species with rapid environmental changes. Understanding how organisms respond to these changes is of major concern for the future of biodiversity. The house mouse on a Sub‐Antarctic island (Guillou Island, Kerguelen Archipelago) had to face such challenges twice: first when invading the island two centuries ago; and nowadays when coping with an in‐depth remodeling of its habitat due to a cohort of anthropogenic changes. Morphometric and biomechanical results show that the initial invasion triggered the evolution of a jaw shape adapted to the local food resources. Contemporary changes are also associated to changes in jaw morphology, but are not directly functionally relevant. Here, a complex response integrating feeding behaviour, investment in feeding structure, and degree of mineralization, may provide the mice with a better tool to benefit of wider resources utilization and/or better cope with intra‐specific competition in a changing habitat. These Sub‐Antarctic mice exemplify that success of invasive species rely on the capacity of facing rapidly varying environments through integrated, multi‐faceted responses involving behaviour to morphology through life‐history traits. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 513–526.  相似文献   

10.
11.
Theory assumes that postcopulatory sexual selection favors increased investment in testes size because greater numbers of sperm within the ejaculate increase the chance of success in sperm competition, and larger testes are able to produce more sperm. However, changes in the organization of the testes tissue may also affect sperm production rates. Indeed, recent comparative analyses suggest that sperm competition selects for greater proportions of sperm‐producing tissue within the testes. Here, we explicitly test this hypothesis using the powerful technique of experimental evolution. We allowed house mice (Mus domesticus) to evolve via monogamy or polygamy in six replicate populations across 24 generations. We then used histology and image analysis to quantify the proportion of sperm‐producing tissue (seminiferous tubules) within the testes of males. Our results show that males that had evolved with sperm competition had testes with a higher proportion of seminiferous tubules compared with males that had evolved under monogamy. Previously, it had been shown that males from the polygamous populations produced greater numbers of sperm in the absence of changes in testes size. We thus provide evidence that sperm competition selects for an increase in the density of sperm‐producing tissue, and consequently increased testicular efficiency.  相似文献   

12.
With its ease of availability during adolescence, sweetened ethanol (‘alcopops’) is consumed within many contexts. We asked here whether genetically based differences in social motivation are associated with how the adolescent social environment impacts voluntary ethanol intake. Mice with previously described differences in sociability (BALB/cJ, C57BL/6J, FVB/NJ and MSM/MsJ strains) were weaned into isolation or same‐sex pairs (postnatal day, PD, 21), and then given continuous access to two fluids on PDs 34–45: one containing water and the other containing an ascending series of saccharin‐sweetened ethanol (3–6–10%). Prior to the introduction of ethanol (PDs 30–33), increased water and food intake was detected in some of the isolation‐reared groups, and controls indicated that isolated mice also consumed more ‘saccharin‐only’ solution. Voluntary drinking of ‘ethanol‐only’ was also higher in a subset of the isolated groups on PDs 46–49. However, sweetened ethanol intake was increased in all isolated strain × sex combinations irrespective of genotype. Surprisingly, blood ethanol concentration (BEC) was not different between these isolate and socially housed groups 4 h into the dark phase. Using lickometer‐based measures of intake in FVB mice, we identified that a predominance of increased drinking during isolation transpired outside of the typical circadian consumption peak, occurring ≈8.5 h into the dark phase, with an associated difference in BEC. These findings collectively indicate that isolate housing leads to increased consumption of rewarding substances in adolescent mice independent of their genotype, and that for ethanol this may be because of when individuals drink during the circadian cycle.  相似文献   

13.
Gel filtration of the nondialyzable fraction of urine from normal inbred mice on Sephadex G-100 yielded three peaks (I, II, and III in order of elution), the relative sizes of which varied with the sex and strain of the mice. Constituents of peak I, the breakthrough peak, included uromucoid (Tamm-Horsfall mucoprotein); peak III was low in nitrogen, rich in carbohydrate, nonprecipitable with trichloroacetic acid, gave no definitive ultraviolet or visible spectrum, and had a sedimentation coefficient of 0.5 S. Peak II contained the electrophoretically distinguishable prealbumins of the major urinary protein (MUP) complex. These components (known as 1, 2, and 3 in order of increasing mobility toward the anode) were separated by chromatography on diethylaminoethyl cellulose. Tryptic peptide mapping indicated that components 1 and 2, a genetic variant shown to be under the control of one genetic locus (the Mup-alocus), differed by a single peptide. Components 1 and 3 had a number of peptides in common plus several peptides unique to each. The peptide map of any given component did not differ between sexes or between the strains investigated.  相似文献   

14.
Sexual size dimorphism (SSD) is a widespread phenomenon in different animal taxa, including the subfamily of goats and sheep (Caprinae), which belongs to the most dimorphic mammalian groups. Rensch's rule describes the pattern of SSD, claiming that larger species generally exhibits higher male to female body size ratio. Agreement with Rensch's rule is manifested by slope of the allometric relationship between male and female body size exceeding one. To test this rule, we analysed the data available in the literature on adult body mass of males and females in domestic goat and sheep breeds (169 and 303, respectively) and 37 wild species/subspecies of the subfamily Caprinae. According to the current phylogenetical hypotheses, there are six distinct monophyletic groups with different levels of SSD (expressed as M/F): (1) wild goats (1.83); (2) wild sheep (1.67); (3) non‐European chamoises, including Ovibos moschatus (1.18); (4) European chamoises (1.27); (5) Budorcas taxicolor (1.01); and (6) Pantholops hodgsonii (1.65). Domestication has led to a remarkable decline in SSD of both domestic goats (1.36) and sheep (1.41). The highest regression slope of the relationship between male and female body size is that estimated for wild goats (1.32), followed by wild sheep (1.24), non‐European chamoises (1.14), domestic sheep (1.13), and domestic goats (1.10). Nevertheless, only the last two values are statistically different from one and thus corroborate Rensch's rule. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 872–883.  相似文献   

15.
16.
Eadie J  Lyon BE 《Molecular ecology》2011,20(24):5114-5118
Conspecific brood parasites lay their eggs in the nests of other females in the same population, leading to a fascinating array of possible ‘games’ among parasites and their hosts ( Davies 2000 ; Lyon & Eadie 2008 ). Almost 30 years ago, Andersson & Eriksson (1982) first suggested that perhaps this form of parasitism was not what it seemed—indeed, perhaps it was not parasitism at all! Andersson & Eriksson (1982) observed that conspecific brood parasitism (CBP) was disproportionally common in waterfowl (Anatidae), a group of birds for which natal philopatry is female‐biased rather than the more usual avian pattern of male‐biased natal philopatry. Accordingly, Andersson (1984) reasoned (and demonstrated in an elegantly simple model) that relatedness among females might facilitate the evolution of CBP—prodding us to reconsider it as a kin‐selected and possibly cooperative breeding system rather than a parasitic interaction. The idea was much cited but rarely tested empirically until recently—a number of new studies, empowered with a battery of molecular techniques, have now put Andersson’s hypothesis to the test ( Table 1 ). The results are tantalizing, but also somewhat conflicting. Several studies, focusing on waterfowl, have found clear evidence that hosts and parasites are often related ( Andersson & Åhlund 2000 ; Roy Nielsen et al. 2006 ; Andersson & Waldeck 2007 ; Waldeck et al. 2008 ; Jaatinen et al. 2009 ; Tiedemann et al. 2011 ). However, this is not always the case ( Semel & Sherman 2001 ; Anderholm et al. 2009 ; and see Pöysa 2004 ). In a new study reported in this issue of Molecular Ecology, Jaatinen et al. (2011a) provide yet another twist to this story that might explain not only why such variable results have been obtained, but also suggests that the games between parasites and their hosts—and the role of kinship in these games—may be even more complex than Andersson (1984) imagined. Indeed, the role of kinship in CBP may be very much one of relative degree!
Table 1. A summary of recent studies that have tested for evidence of relatedness between hosts and parasites in avian conspecific brood parasites
Species Evidence of host–parasite relatedness? Evidence of local kin structure? Relatedness > expected spatially r Host–Parasite r Population Costs or benefits measured? Method Source
Common moorhen (Gallinula chloropus) Mixed
Some parasitism between relatives
Yes
Limited dispersal of both sexes
No
Not greater than expected
No (but discussed) DNA minisatellite fingerprints McRae & Burke (1996 )
Common goldeneye (Bucephala clangula) Yes
Number of parasitic eggs also increased with relatedness
Not tested; high female philopatry Yes 0.132 No Protein fingerprints 50 bands Andersson & Åhlund (2000 )
Wood duck (Aix sponsa) No (parasites avoid relatives) Not tested; high female philopatry No
Significantly less likely to parasitize local kin
No Behavioural observation Semel & Sherman (2001 )
Common goldeneye (B. clangula) No
Relatedness unlikely to explain CBP
Not tested Not measured Yes Field measures Pöysa (2004 )
Wood duck (A. sponsa) Yes (for primary parasites) No Yes (for primary parasites) 0.04 (all) 0.11 (primary parasites) 0.01–0.02 No 5 microsatellites Roy Nielsen et al. (2006 )
Common eider (Mollissima somateria) Yes No Yes 0.122 (all) 0.126, 0.162 (two colonies) ?0.065 (neighbours 1–10 m) No Protein fingerprints 30 bands Andersson & Waldeck (2007 )
Common eider (M. somateria) Yes
Number of parasitic eggs also increased with relatedness
Yes
Relatedness declined with distance
Possibly
Host–parasite relatedness > close neighbours in 1 of 2 analyses
0.18–0.21 0.09 (neighbours) No Protein fingerprints 51 bands Waldeck et al. (2008 )
Barnacle goose (Branta llucopsis) No Weak
Females within 40 m more closely related
No 0.04 ?0.0008 No Protein fingerprints 28 bands Anderholm et al. (2009 )
Barrow’s goldeneye (Bucephala islandica) Yes
Number of parasitic eggs increased with relatedness
Weak
Slight decline in relatedness with distance
No
Host–parasite relatedness similar to neighbours
0.08 ?0.015
0.11 (neighbours)
No 19 microsatellites Jaatinen et al. 2009
Common eider (M. somateria) Yes
Interaction with parasite status
No Yes 0.39 (mean) 0.48, 0.28 (different sites) 0.0 No 7 microsatellites Tiedemann et al. (2011 )
  • CBP, conspecific brood parasitism.
Jaatinen et al.’s (2011a) study highlights several intriguing and as yet not fully resolved issues. First, they confirm results from an earlier study ( Jaatinen et al. 2009 ) showing that relatedness influences conspecific brood parasitism (CBP) in the Barrow’s goldeneye (Bucephala islandica; Fig. 1 ), a species of cavity‐nesting sea duck well known to engage in parasitic egg‐laying ( Eadie 1989 ; Eadie & Fryxell 1992 ). CBP in this species was more frequent among related females that nested in close proximity ( Jaatinen et al. 2009, 2011a ). Female natal philopatry is pronounced in the Barrow’s goldeneye ( Eadie et al. 2000 ), and it is possible the spatial proximity of kin could account for this pattern. However, Jaatinen et al. (2011a) show that relatedness and distance independently affected the extent of parasitism, suggesting that natal philopatry alone cannot provide an explanation. Similar patterns of elevated host–parasite relatedness after controlling for spatial proximity of kin have been reported for other species ( Table 1 ). The novel observation of Jaatinen et al.’s newest study is that the nesting status of the parasite profoundly altered the influence of relatedness on host–parasite interactions. Parasitic females that also had a nest of their own (‘nesting parasites’) increased the number of eggs laid in a host nest with increasing relatedness to the host, whereas parasites without a nest of their own (‘non‐nesting parasites’) did not. Apparently, females within the same population may be using different decision rules with respect to relatedness, and the effects of kinship on CBP may be far more subtle than previously appreciated.
Figure 1 Open in figure viewer PowerPoint A pair of Barrow’s goldeneyes (Bucephala islandica) in central British Columbia. Photo credit: Bruce Lyon.  相似文献   

17.
Studies of rodents have shown that both forced and voluntary chronic exercise cause increased hindlimb bone diameter, mass, and strength. Among species of mammals, "cursoriality" is generally associated with longer limbs as well as relative lengthening of distal limb segments, resulting in an increased metatarsal/femur (MT/F) ratio. Indeed, we show that phylogenetic analyses of previously published data indicate a positive correlation between body mass-corrected home range area and both hindlimb length and MT/F in a sample of 19 species of Carnivora, although only the former is statistically significant in a multiple regression. Therefore, we used an experimental evolution approach to test for possible adaptive changes (in response to selective breeding and/or chronic exercise) in hindlimb bones of four replicate lines of house mice bred for high voluntary wheel running (S lines) for 21 generations and in four nonselected control (C) lines. We examined femur, tibiafibula, and longest metatarsal of males housed either with or without wheel access for 2 months beginning at 25-28 days of age. As expected from previous studies, mice from S lines ran more than C (primarily because the former ran faster) and were smaller in body size (both mass and length). Wheel access reduced body mass (but not length) of both S and C mice. Analysis of covariance (ANCOVA) revealed that body mass was a statistically significant predictor of all bone measures except MT/F ratio; therefore, all results reported are from ANCOVAs. Bone lengths were not significantly affected by either linetype (S vs. C) or wheel access. However, with body mass as a covariate, S mice had significantly thicker femora and tibiafibulae, and wheel access also significantly increased diameters. Mice from S lines also had heavier feet than C, and wheel access increased both foot and tibiafibula mass. Thus, the directions of evolutionary and phenotypic adaptation are generally consistent. Additionally, S-line individuals with the mini-muscle phenotype (homozygous for a Mendelian recessive allele that halves hindlimb muscle mass [Garland et al., 2002, Evolution 56:1,267-1,275]) exhibited significantly longer and thinner femora and tibiafibulae, with no difference in bone masses. Two results were considered surprising. First, no differences were found in the MT/F ratio (the classic indicator of cursoriality). Second, we did not find a significant interaction between linetype and wheel access for any trait, despite the higher running rate of S mice.  相似文献   

18.
Different rat and mouse models are used in studies of social interactions. Simple behavioral measures, which are commonly used in the laboratory, allow to perform relatively short experiments and to use multiple brain manipulation techniques. However, too much focus on the simplest behavioral models generates a serious risk of reducing ecological validity or even studying phenomena which would never happen outside of the laboratory. In this review, we discuss the suitability of mice and rats as model organisms for studying social behaviors, with focus on social transmission of fear paradigms. First, we briefly introduce the concept of domestication and what impact it had on laboratory rodents. Then, we present two aspects of social behaviors, sociability and dominance, which are crucial for social organization in these species. Finally, we present experimental models used for studying how animals transmit information about danger between each other, and how these models may reflect what happens in the natural environment. We discuss the difficulties that arise from our limited knowledge of rat and mouse ecology, especially their social life. We also explore the subject of balancing ecological validity and controllability in rodent models of social behaviors, the latter being particularly important for studying brain activity. Although it is very challenging, an efficient program for social neuroscience research should, in our opinion, aim at bridging the gap between laboratory and field studies.  相似文献   

19.
The systematics of the genus Capra remain controversial in spite of studies conducted using morphology, mtDNA, and allozymes. Here, we assess the evolutionary history of Capra (i) using phylogenetic analysis of two nuclear genes located on the Y-chromosome and (ii) previously published and new cytochrome b sequences. For the Y-chromosome phylogeny, we sequenced segments from the amelogenin (AMELY) and zinc finger (ZFY) genes from all of the eight wild taxa and from domestic goats (Capra hircus). Phylogenetic analysis of the Y-chromosome data revealed two well-defined clades. The domestic goat (C. hircus), the bezoar (Capra aegagrus), and the markhor (C. falconeri) belong to one clade (ML bootstrap value [BP]: 98%), suggesting that domestic goats originated from one or both of these wild species. The second clade (ML BP: 92%) is comprised of all the other wild species. Horn morphology is generally concordant with the Y-chromosome phylogeny. The mtDNA data also revealed two well-defined clades. However, the species in each clade are different from those inferred from the Y-chromosome data. To explain the discordance between Y-chromosome and mtDNA phylogenies, several hypotheses are considered. We suggest that a plausible scenario involves mtDNA introgression between ancestral taxa before the relatively recent colonization of Western Europe, the Caucasus Mountains, and East Africa by Capra populations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号