首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dimethylsulfoniopropionate (DMSP), a globally important organosulfur compound is produced in prodigious amounts (2.0 Pg sulfur) annually in the marine environment by phytoplankton, macroalgae, heterotrophic bacteria, some corals and certain higher plants. It is an important marine osmolyte and a major precursor molecule for the production of climate-active volatile gas dimethyl sulfide (DMS). DMSP synthesis take place via three pathways: a transamination ‘pathway-’ in some marine bacteria and algae, a Met-methylation ‘pathway-’ in angiosperms and bacteria and a decarboxylation ‘pathway-’ in the dinoflagellate, Crypthecodinium. The enzymes DSYB and TpMMT are involved in the DMSP biosynthesis in eukaryotes while marine heterotrophic bacteria engage key enzymes such as DsyB and MmtN. Several marine bacterial communities import DMSP and degrade it via cleavage or demethylation pathways or oxidation pathway, thereby generating DMS, methanethiol, and dimethylsulfoxonium propionate, respectively. DMSP is cleaved through diverse DMSP lyase enzymes in bacteria and via Alma1 enzyme in phytoplankton. The demethylation pathway involves four different enzymes, namely DmdA, DmdB, DmdC and DmdD/AcuH. However, enzymes involved in the oxidation pathway have not been yet identified. We reviewed the recent advances on the synthesis and catabolism of DMSP and enzymes that are involved in these processes.  相似文献   

2.
The microbial cleavage of dimethylsulfoniopropionate (DMSP) generates volatile dimethyl sulfide (DMS) and is an important step in global sulfur and carbon cycles. DddP is a DMSP lyase in marine bacteria, and the deduced dddP gene product is abundant in marine metagenomic data sets. However, DddP belongs to the M24 peptidase family according to sequence alignment. Peptidases hydrolyze C‐N bonds, but DddP is deduced to cleave C‐S bonds. Mechanisms responsible for this striking functional shift are currently unknown. We determined the structures of DMSP lyase RlDddP (the DddP from Ruegeria lacuscaerulensis ITI_1157) bound to inhibitory 2‐(N‐morpholino) ethanesulfonic acid or PO43? and of two mutants of RlDddP bound to acrylate. Based on structural, mutational and biochemical analyses, we characterized a new ion‐shift catalytic mechanism of RlDddP for DMSP cleavage. Furthermore, we suggested the structural mechanism leading to the loss of peptidase activity and the subsequent development of DMSP lyase activity in DddP. This study sheds light on the catalytic mechanism and the divergent evolution of DddP, leading to a better understanding of marine bacterial DMSP catabolism and global DMS production.  相似文献   

3.
Dimethyl sulfide(DMS) is the most abundant form of volatile sulfur in Earth's oceans, and is mainly produced by the enzymatic clevage of dimethylsulfoniopropionate(DMSP). DMS and DMSP play important roles in driving the global sulfur cycle and may affect climate. DMSP is proposed to serve as an osmolyte, a grazing deterrent, a signaling molecule, an antioxidant, a cryoprotectant and/or as a sink for excess sulfur. It was long believed that only marine eukaryotes such as phytoplankton produce DMSP. However, we recently discovered that marine heterotrophic bacteria can also produce DMSP, making them a potentially important source of DMSP. At present, one prokaryotic and two eukaryotic DMSP synthesis enzymes have been identified.Marine heterotrophic bacteria are likely the major degraders of DMSP, using two known pathways: demethylation and cleavage.Many phytoplankton and some fungi can also cleave DMSP. So far seven different prokaryotic and one eukaryotic DMSP lyases have been identified. This review describes the global distribution pattern of DMSP and DMS, the known genes for biosynthesis and cleavage of DMSP, and the physiological and ecological functions of these important organosulfur molecules, which will improve understanding of the mechanisms of DMSP and DMS production and their roles in the environment.  相似文献   

4.
Abstract The microbial mat was chosen as a model ecosystem to study dynamics of dimethyl sulfide (DMS) in marine sediments in order to gain insight into key processes and factors which determine emission rates. A practical advantage, compared to open ocean ecosystems, is that microbial mats contain high biomasses of different functional groups of bacteria involved in DMS dynamics, and that DMS concentrations are generally high enough to allow direct measurement of emission rates. Field data showed that, during the seasonal development of microbial mats, concentrations of chlorophyll a corresponded to dimethylsulfoniopropionate (DMSP). DMSP is an important precursor of DMS. It was demonstrated, with laboratory cultures, that various species of benthic diatoms produce substantial amounts of DMSP. The abundances of aerobic and anaerobic DMS- or DMSO-utilizing bacteria were estimated using the most-probable-number technique. Laboratory experiments with relatively undisturbed sediment cores showed that microbial mats act as a sink for DMS under oxic/light (day) conditions, and as a source of DMS under anoxic/dark (night) conditions. Axenic culture studies with Chromatium vinosum M2 and Thiocapsa pfennigii M8 (isolated from a microbial mat) showed that, under anoxic/light conditions, DMS was quantitatively converted to dimethylsulfoxide (DMSO). T. roseopersicina M11 converted DMSP to DMS and acrylate, apparently without use of either substrate. Received: 5 May 1997; Accepted: 21 August 1997  相似文献   

5.
Dimethylsulfoniopropionate (DMSP) cleavage, yielding dimethyl sulfide (DMS) and acrylate, provides vital carbon sources to marine bacteria, is a key component of the global sulfur cycle and effects atmospheric chemistry and potentially climate. Acrylate and its metabolite acryloyl‐CoA are toxic if allowed to accumulate within cells. Thus, organisms cleaving DMSP require effective systems for both the utilization and detoxification of acrylate. Here, we examine the mechanism of acrylate utilization and detoxification in Roseobacters. We propose propionate‐CoA ligase (PrpE) and acryloyl‐CoA reductase (AcuI) as the key enzymes involved and through structural and mutagenesis analyses, provide explanations of their catalytic mechanisms. In most cases, DMSP lyases and DMSP demethylases (DmdAs) have low substrate affinities, but AcuIs have very high substrate affinities, suggesting that an effective detoxification system for acylate catabolism exists in DMSP‐catabolizing Roseobacters. This study provides insight on acrylate metabolism and detoxification and a possible explanation for the high Km values that have been noted for some DMSP lyases. Since acrylate/acryloyl‐CoA is probably produced by other metabolism, and AcuI and PrpE are conserved in many organisms across all domains of life, the detoxification system is likely relevant to many metabolic processes and environments beyond DMSP catabolism.  相似文献   

6.
This is a report on the purification and characterization of an algal dimethylsulfoniopropionate (DMSP) lyase. This enzyme, also found in bacteria, is responsible for producing most of the dimethylsulfide (DMS) in marine environments. It was purified from the green macroalga, Ulva curvata (Kützing) De Toni. Initial in-vivo experiments showed that DMSP lyase activity from endogenous DMSP in Ulva increased for 24 h and then decreased as the culture aged and endogenous DMSP levels were depleted. When amended with exogenous DMSP, rates of DMSP lyase activity remained high even when the culture was 5 d old. Following disruption of the DMSP-depleted U. curvata cells by grinding, a soluble DMSP lyase was purified. This enzyme is a monomer of 78 kDa which has a K m for DMSP of 0.52 mM. Soluble DMSP lyase had an optimum pH of 8 and an optimum osmotic strength of 75 mM NaCl. Following disruption of the algae by either grinding with sand or blending, and washing out the soluble enzyme, the green tissue, when treated with the non-ionic detergent, Triton X-100, solubilized additional DMSP lyase activity. Three hydrophobic variant forms of Ulva DMSP lyase were isolated and partially characterized from the detergent-solubilized activity. While the molecular and kinetic properties of the algal enzyme are different from the bacterial enzymes we purified earlier, both the soluble and membrane-bound forms did, nevertheless, cross-react with antibodies raised against the bacterial (Alcaligenes strain M3A) DMSP lyase.Abbreviations DMS dimethylsulfide - DMSP dimethylsulfoniopropionate This paper is dedicated to D.I. Arnon (1910–1995). We thank Dr. Richard Zingmark for helpful discussions on the speciation of the natural algal samples used in these experiments, and Robin Krest for collecting samples for us on numerous occasions. This work was supported, in part, by a grant from the University of South Carolina Venture Fund.  相似文献   

7.
DMSP (dimethyl sulphonium propionate) contents produced by an Antarctic marine phytoplankton species, Phaeocystis antarctica (Prymnesiophyta), which were incubated under light conditions with radiations of different UV wavebands, were measured by gas chromatography after various exposure times. Full light (UV-B + UV-A + PAR) caused the strongest decrease in the production of DMSP in the alga. A marked depression of DMSP content was also observed with short UV-B and UV-A wavebands after 3 h. It was therefore hypothesised that DMSP production in Phaeocystis antarctica was inhibited by UV radiation. There was a negative correlation on change of DMSP contents under UV radiation. There was a negative correlation on change of DMSP contents under UV radiation with exposure times. The conversion rate of DMSP dissolved to DMS (dimethyl sulphide) was significantly increased with UV radiation. The possibility could not be excluded that a high concentration of free chemical radicals in seawater due to UV radiation resulted in an increase of DMSP cleavage in seawater. The oxidation of DMS in seawater due to UV-B radiation could result in a decrease of its flux to the atmosphere. The effect of UV radiation on DMSP production and oxidation of DMS may be an important factor in the variability of DMSP and the global flux of DMS from ocean to atmosphere. Received: 17 June 1996 / Accepted: 17 July 1997  相似文献   

8.
Dimethylsulfoniopropionate (DMSP) is mainly produced by marine phytoplankton but is released into the microbial food web and degraded by marine bacteria to dimethyl sulfide (DMS) and other products. To reveal the abundance and distribution of bacterial DMSP degradation genes and the corresponding bacterial communities in relation to DMS and DMSP concentrations in seawater, we collected surface seawater samples from DMS hot spot sites during a cruise across the Pacific Ocean. We analyzed the genes encoding DMSP lyase (dddP) and DMSP demethylase (dmdA), which are responsible for the transformation of DMSP to DMS and DMSP assimilation, respectively. The averaged abundance (±standard deviation) of these DMSP degradation genes relative to that of the 16S rRNA genes was 33% ± 12%. The abundances of these genes showed large spatial variations. dddP genes showed more variation in abundances than dmdA genes. Multidimensional analysis based on the abundances of DMSP degradation genes and environmental factors revealed that the distribution pattern of these genes was influenced by chlorophyll a concentrations and temperatures. dddP genes, dmdA subclade C/2 genes, and dmdA subclade D genes exhibited significant correlations with the marine Roseobacter clade, SAR11 subgroup Ib, and SAR11 subgroup Ia, respectively. SAR11 subgroups Ia and Ib, which possessed dmdA genes, were suggested to be the main potential DMSP consumers. The Roseobacter clade members possessing dddP genes in oligotrophic subtropical regions were possible DMS producers. These results suggest that DMSP degradation genes are abundant and widely distributed in the surface seawater and that the marine bacteria possessing these genes influence the degradation of DMSP and regulate the emissions of DMS in subtropical gyres of the Pacific Ocean.  相似文献   

9.
By the method of cold alkali hydrolysis, 29 marine benthic cyanobacteria were screened for production of alkali-labile precursors of dimethyl sulfide (DMS) including dimethylsulfoniopropionate (DMSP), a compound of significant importance in marine environments. Concentrations of DMS precursors ranged from undetectable to 0.8 mmol (g Chl a)–1. The data correspond to some previous investigations concerning DMSP content of marine cyanobacteria and suggest that marine benthic cyanobacteria are only minor producers of DMSP. Received: 3 July 1997 / Accepted: 21 October 1997  相似文献   

10.
Several bloom‐forming marine algae produce concentrated intracellular dimethylsulfoniopropionate (DMSP) and display high DMSP cleavage activity in vitro and during lysis after grazing or viral attack. Here we show evidence for cleavage of DMSP in response to environmental cues among different strains of the haptophyte Emiliania huxleyi (Lohmann) Hay et Mohler and the dinoflagellate Alexandrium spp. (Halim). Sparging or shaking live cells of either taxon increased dimethyl sulfide (DMS), especially in dinoflagellates, known to be very sensitive to shear stresses. Additions of polyamines, known triggers of exocytosis in some protists, also stimulated DMSP cleavage in a dose‐responsive manner. We observed DMS production by some algae after shifts in light regime. When most exponential‐phase E. huxleyi were transferred to continuous darkness, cells decreased in volume and DMSP content within 24 h; DMSP content per unit cell volume remained relatively steady. DMS accumulated as long as cells remained in the dark, but on returning to a light:dark cycle DMS accumulation ceased within 24 h. However, E. huxleyi strain CCMP 373, containing highly active in vitro DMSP lyase, produced only transient accumulations of DMS in the dark. This was apparently due to production and concomitant oxidation or uptake of DMS, because cells of this strain rapidly removed DMS added to cultures. Three strains of the dinoflagellate Alexandrium tamarense containing high in vitro DMSP lyase activity showed no DMS production in the dark, and all appeared to remove additions of DMS. Alexandrium tamarense strain CCMP 1771 also removed dimethyl disulfide, an inhibitor of bacterial DMS consumption. These data suggest that physical or chemical cues can trigger algal DMSP cleavage, but DMS production may be masked by subsequent oxidation and/or uptake.  相似文献   

11.
Dimethylsulfoniopropionate (DMSP) is a natural product of algae and aquatic plants, particularly those from saline environments. We investigated whether DMSP could serve as a precursor of thiols in anoxic coastal marine sediments. The addition of 10 or 60 μM DMSP to anoxic sediment slurries caused the concentrations of 3-mercaptopropionate (3-MPA) and methanethiol (MSH) to increase. Antibiotics prevented the appearance of these thiols, indicating biological formation. Dimethyl sulfide (DMS) and acrylate also accumulated after the addition of DMSP, but these compounds were rapidly metabolized by microbes and did not reach high levels. Acrylate and DMS were probably generated by the enzymatic cleavage of DMSP. MSH arose from the microbial metabolism of DMS, since the direct addition of DMS greatly increased MSH production. Additions of 3-methiolpropionate gave rise to 3-MPA at rates similar to those with DMSP, suggesting that sequential demethylation of DMSP leads to 3-MPA formation. Only small amounts of MSH were liberated from 3-methiolpropionate, indicating that demethiolation was not a major transformation for 3-methiolpropionate. We conclude that DMSP was degraded in anoxic sediments by two different pathways. One involved the well-known enzymatic cleavage to acrylate and DMS, with DMS subsequently serving as a precursor of MSH. In the other pathway, successive demethylations of the sulfur atom proceeded via 3-methiolpropionate to 3-MPA.  相似文献   

12.
13.
Dimethyl sulfide (DMS) is quantitatively the most important biogenic sulfur compound emitted from oceans and salt marshes. It is formed primarily by the action of dimethylsulfoniopropionate (DMSP) lyase which cleaves DMSP, an algal osmolyte, to equimolar amounts of DMS and acrylate. This report is the first to describe the isolation and purification of DMSP lyase. The soluble enzyme was purified to electrophoretic homogeneity from a facultatively anaerobic gram-negative rod-shaped marine bacterium identified as an Alcaligenes species by the Vitek gram-negative identification method. The key to successful purification of the enzyme was its binding to, and hydrophobic chromatography on, a phenyl-Sepharose CL-4B column. DMSP lyase biosynthesis was induced by its substrate, DMSP; its product, acrylate; and also by acrylamide. The relative effectivenesses of the inducers were 100, 90, and 204%, respectively. DMSP lyase is a 48-kDa monomer with a Michaelis-Menten constant (K(infm)) for DMSP of 1.4 mM and a V(infmax) of 408 (mu)mol/min/mg of protein. It converted DMSP to DMS and acrylate stoichiometrically. The similar K(infm) values measured for pure DMSP lyase and the axenic culture, seawater, and surface marsh sediment suggest that the microbes in these ecosystems must have enzymes similar to the one purified from our marine isolate. Anoxic sediment populations, however, have a 40-fold-lower K(infm) for this enzyme (30 (mu)M), possibly giving them the capability to metabolize much lower levels of DMSP than the aerobes.  相似文献   

14.
二甲基巯基丙酸内盐(dimethylsulfoniopropionate,DMSP)是全球硫循环和碳循环的重要载体物质。海洋浮游植物、大型藻类和临海被子植物是DMSP的主要生产者。每年DMSP的产量可以达到1×10~9吨。在北大西洋表面的某些区域,DMSP的产量可以达到碳固定总量的10%。微生物介导的DMSP的裂解是全球硫循环和碳循环的重要步骤。目前,8种参与裂解DMSP的DMSP裂解酶已被报道。在已发现的8种DMSP裂解酶中,3种DMSP裂解酶的催化机制得到了研究和阐明。本文根据国内外研究成果,主要对DMSP裂解过程的酶促催化机制的研究进展进行综述,认为在今后工作中需要继续发现新的DMSP裂解酶,并进一步揭示海洋微生物裂解DMSP的分子机制。  相似文献   

15.
New Routes for Aerobic Biodegradation of Dimethylsulfoniopropionate   总被引:7,自引:6,他引:1       下载免费PDF全文
Dimethylsulfoniopropionate (DMSP), an osmolyte in marine plants, is biodegraded by cleavage of dimethyl sulfide (DMS) or by demethylation to 3-methiolpropionate (MMPA) and 3-mercaptopropionate (MPA). Sequential demethylation has been observed only with anoxic slurries of coastal sediments. Bacteria that grew aerobically on MMPA and DMSP were isolated from marine environments and phytoplankton cultures. Enrichments with DMSP selected for bacteria that generated DMS, whereas MMPA enrichments selected organisms that produced methanethiol (CH3SH) from either DMSP or MMPA. A bacterium isolated on MMPA grew on MMPA and DMSP, but rapid production of CH3SH from DMSP occurred only with DMSP-grown cells. Low levels of MPA accumulated during growth on MMPA, indicating demethylation as well as demethiolation of MMPA. The alternative routes for DMSP biodegradation via MMPA probably impact on net DMS fluxes to the marine atmosphere.  相似文献   

16.
17.
Dimethylsulfoniopropionate (DMSP) is a marine organosulfur compound with important roles in stress protection, marine biogeochemical cycling, chemical signalling and atmospheric chemistry. Diverse marine microorganisms catabolize DMSP via DMSP lyases to generate the climate-cooling gas and info-chemical dimethyl sulphide. Abundant marine heterotrophs of the Roseobacter group (MRG) are well known for their ability to catabolize DMSP via diverse DMSP lyases. Here, a new DMSP lyase DddU within the MRG strain Amylibacter cionae H-12 and other related bacteria was identified. DddU is a cupin superfamily DMSP lyase like DddL, DddQ, DddW, DddK and DddY, but shares <15% amino acid sequence identity with these enzymes. Moreover, DddU proteins forms a distinct clade from these other cupin-containing DMSP lyases. Structural prediction and mutational analyses suggested that a conserved tyrosine residue is the key catalytic amino acid residue in DddU. Bioinformatic analysis indicated that the dddU gene, mainly from Alphaproteobacteria, is widely distributed in the Atlantic, Pacific, Indian and polar oceans. For reference, dddU is less abundant than dddP, dddQ and dddK, but much more frequent than dddW, dddY and dddL in marine environments. This study broadens our knowledge on the diversity of DMSP lyases, and enhances our understanding of marine DMSP biotransformation.  相似文献   

18.
Despite the global importance of dimethylsulfoniopropionate (DMSP)/dimethyl sulfide (DMS) and their role in climate regulation, little is known about the mechanisms of their production and storage in Phaeocystis sp., a major contributor of DMS in polar areas. Phaeocystis secretes polymer microgels, by regulated exocytosis, remaining in condensed phase while stored in secretory vesicles ( Chin et al. 2004 ). In secretory cells, vesicles also store small molecules, which are released during exocytosis. Here, we demonstrated that DMSP and DMS were stored in the secretory vesicles of Phaeocystis antarctica G. Karst. They were trapped within a polyanionic gel matrix, which prevented an accurate measurement of their concentration in the absence of a chelating agent such as EDTA. Understanding the production and the export mechanisms of DMSP and DMS into seawater is important because of the impact the cellular and extracellular pools of these highly relevant biogeochemical metabolites have on the environment. The pool of total DMSP in the presence of Phaeocystis may be underestimated by as much as half. Obtaining accurate budget measurements is the first step toward gaining a better understanding of key issues related to the DMS ocean–air interaction and the effect of phytoplankton DMS production on climate change.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号