首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To arctic breeding geese, the salt marshes of the International Wadden Sea are important spring staging areas. Many of these marshes have always been grazed with livestock (mainly cattle and sheep). To evaluate the influence of livestock grazing on composition and structure of salt-marsh communities and its consequences for habitat use by geese, a total of 17 pairs of grazed and ungrazed marshes were visited both in April and May 1999, and the accumulated grazing pressure by geese was estimated using dropping counts. Observed grazing pressure was related to management status and to relevant vegetation parameters.The intensity of livestock grazing influences the vegetation on the marsh. Salt marshes that are not grazed by livestock are characterised by stands with a taller canopy, a lower cover of grasses preferred by geese, and a higher cover of plants that are not preferred.Overall goose-dropping densities are significantly lower in ungrazed marshes compared to marshes grazed by livestock. Some ungrazed marshes had comparatively high goose grazing pressure, and these were all natural marshes on a sandy soil, or artificial mainland marshes with a recent history of intensive livestock grazing. Goose grazing is associated with a short canopy. The plant communities with short canopy, dominated by Agrostis stolonifera, Festuca rubra and Puccinellia maritima, together account for 85% of all goose droppings in our data.The sites that were not visited by geese differed very little from those that were visited, in the parameters we measured. This might indicate that there was no shortage of available habitat for spring staging geese in the Wadden Sea, in the study period.  相似文献   

2.
The salt marshes of the Wadden Sea are important wintering areas for some species of granivorous passerines, which have declined considerably since the 1960s. We investigated the habitat choice of all wintering passerines in eight study areas in German salt marshes with special consideration of human impact on these habitats. Granivorous species that almost exclusively winter in salt marshes, Shorelark (Eremophila alpestris), Snow Bunting (Plectrophenax nivalis) and Twite (Carduelis flavirostris) were concentrated in the lower salt marsh vegetation and in the driftlines, while all other species preferred the high upper salt marsh communities, although Rock Pipits (Anthus petrosus littoralis) fed in muddy areas along ditches. Shorelarks switched habitat in conditions where seeds were scarce to feed instead on arthropods in upper salt marshes. Intensively sheep-grazed upper salt marshes resemble lower salt marshes in their vegetation and were therefore mainly visited by Shorelarks, Snow Buntings and Twites. In winter, the driftline is preferred by the two former species, while in autumn and spring more birds foraged in the salt marshes. Twites prefer to feed mainly on seeds of Salicornia. Areas with S. europaea are visited mainly in late autumn and early winter, while areas with S. stricta are used throughout the winter because of a steady supply of seeds. Several years after embankment, polders are hardly used any more by the lower salt marsh species as the habitat changes into freshwater marshes. Large embankment projects since the early 1960s have included salt marshes and intertidal flats, and the resultant loss of habitat is responsible for the decline of lower salt marsh species. For other passerine species the effects of reclamation are unknown. The effects of intensified grazing on the wintering populations of Shorelark, Snow Bunting and Twite are still unresolved. Although grazing supports lower salt marsh vegetation, the seed production per plant is much lower there and some important seed producers hardly occur. Since grazing was reduced and embankment projects have been stopped, the salt marsh areas (especially lower salt marshes) have increased and so have the wintering populations of Shorelark, Snow Bunting and Twite. For the other species, the consequences of habitat changes are unknown, although it is suggested that reduced grazing will support them. Reducing the human impact on salt marshes will, in the long run, probably lead to a natural salt marsh with much variety in elevation and in its corresponding vegetation and bird communities. Meanwhile, management by grazing might be required in parts of the salt marshes.  相似文献   

3.
Intertidal restoration through realignment of flood defenses has become an important component of the U.K. coastal and estuarine management strategy. Although experimentation with recent deliberate breaches is in progress, the long‐term prognosis for salt marsh restoration can be investigated at a number of sites around Essex, southeast England where salt marshes have been reactivated (unmanaged restoration) by storm events over past centuries. These historically reactivated marshes possess higher creek densities than their natural marsh counterparts. Both geomorphology and sedimentology determine the hydrology of natural and restored salt marshes. Elevation relative to the tidal frame is known to be the primary determinant of vegetation colonization and succession. Yet vegetation surveys and geotechnical analysis at a natural marsh, where areas with good drainage exist in close proximity to areas of locally hindered drainage at the same elevation, revealed a significant inverse relationship between water saturation in the root zone and the abundance of Atriplex portulacoides, normally the physiognomic dominant on upper salt marsh in the region. Elsewhere in Essex natural and restored marshes are typified by very high sediment water contents, and this is reflected in low abundance of A. portulacoides. After a century of reestablishment no significant difference could be discerned between the vegetation composition of the storm‐reactivated marshes and their natural marsh counterparts. We conclude that vegetation composition may be restored within a century of dike breaching, but this vegetation does not provide a reliable indicator of ecological functions related to creek structure.  相似文献   

4.
鄂尔多斯台地盐沼滩地微生物群落与土壤条件分析   总被引:2,自引:1,他引:1  
[背景]我国北方内陆区与平原区土地盐碱化问题严重,针对微生物如何在极端盐碱地植被演替过程中发挥作用的研究鲜有报道.[目的]研究鄂尔多斯台地5种不同植被类型的盐沼湿地微生物群落与土壤条件的关系,筛选出耐盐碱菌群及影响耐盐碱菌群的土壤环境因子.[方法]采用高通量测序技术,对其微生物细菌群落组成进行了比对分析.[结果]鄂尔多...  相似文献   

5.
Terrestrial halophytic vegetation units (salt marshes) cover the alluvial mud‐flats or sandy clays between tidal mean low and mean high water levels and thus form the biological border between sea and land. The various vegetation units of this zone represent the only natural grassland of Europe outside the mountaineous range above the timberline. Their organismic components are subject to a highly dynamic regime of ecological factors due to tidal and other influences, but nevertheless build up communities of relatively high species diversity. They all exhibit remarkable ecophysiological adaptations to their habitat. Eve during the recent decades natural salt marshes have substantially been threatened by technical land reclamation projects along the coastline and now urgently need habitat protection, e.g.in the scope of the national park programs.  相似文献   

6.
Many authors have referred to the important role of vegetation in the consolidation of salt marsh sediments, but experiments previously carried out by us have shown results that do not always agree with these statements. In other words, the type of salt marsh surface coverage is not the main factor that contributes to the consolidation of sediments. To test this hypothesis different Portuguese salt marsh stations (species/unvegetated areas) from two sites, Tagus estuary (Corroios and Pancas) and Ria de Aveiro (Barra and Verdemilho), were compared to evaluate their influence on suspended matter deposition on the salt marsh surface. A short-term sedimentation study was performed within stands of Spartina maritima, Halimione portulacoides, Sarcocornia perennis subsp. perennis and unvegetated areas, by analysing the deposition of sediment material on nylon filters anchored to the marsh surface. Numerical results obtained from hydrodynamic models coupled to a Lagrangean module implemented for the Ria de Aveiro and the Tagus Estuary, namely the root-mean square velocity (V rms) and residual velocity of tides, were also used. Average sedimentation rates (mean value between the different surface cover in a salt marsh) showed a seasonal trend more or less defined but with significantly different values between sites and salt marshes. Sedimentation rates varied between marshes: there are significant differences between Pancas and the other three marshes, but only significant differences in sedimentation rates between Spartina and Sarcocornia. Despite the important role of vegetation in the consolidation of salt marsh sediments, our results suggest that, the position of stations and related abiotic conditions in the salt marshes are determining factors of variation to take into account in the studies related with the stabilization and survival of salt marshes facing sea level rise. Handling editor: P. Viaroli  相似文献   

7.
Question: Does the vegetation of restored salt marshes increasingly resemble natural reference communities over time? Location: The Essex estuaries, southeast England. Methods: Abandoned reclamations, where coastal defences had been breached in storm events, and current salt marsh recreation schemes were surveyed giving a chronosequence of salt marsh regeneration from 2 to 107 years. The presence, abundance and height of plant species were recorded and comparisons were made with adjacent reference salt marsh communities at equivalent elevations. Results: Of the 18 paired sites surveyed, 13 regenerated marshes had fewer species than their adjacent reference marsh, three had an equal number and two had more. The plant communities of only two de‐embankment sites matched that of the reference community. 0–50 year old sites and 51–100 year old sites had fewer species per quadrat than the 101+ year sites and the reference salt marshes. There was a weak relationship between differences in species richness for regenerated and reference marshes and the time since sites were first re‐exposed to tidal inundation. Cover values for the invasive and recently evolved Spartina anglica were greater within regenerated than reference marshes. Conclusions: Salt marsh plants will colonise formerly reclaimed land relatively quickly on resumption of tidal flooding. However, even after 100 years regenerated salt marshes differ in species richness, composition and structure from reference communities.  相似文献   

8.
Narrow fringing salt marshes dominated by Spartina alterniflora occur naturally along estuarine shorelines and provide many of the same ecological functions as more extensive marshes. These fringing salt marshes are sometimes incorporated into shoreline stabilization efforts. We obtained data on elevation, salinity, sediment characteristics, vegetation and fish utilization at three study sites containing both natural fringing marshes and nearby restored marshes located landward of a stone sill constructed for shoreline stabilization. During the study, sediment accretion rates in the restored marshes were approximately 1.5- to 2-fold greater than those recorded in the natural marshes. Natural fringing marsh sediments were predominantly sandy with a mean organic matter content ranging between 1.5 and 6.0%. Average S. alterniflora stem density in natural marshes ranged between 130 and 222 stems m−2, while mean maximum stem height exceeded 64 cm. After 3 years, one of the three restored marshes (NCMM) achieved S. alterniflora stem densities equivalent to that of the natural fringing marshes, while percentage cover and maximum stem heights were significantly greater in the natural than in the restored marshes at all sites. There was no significant difference in the mean number of fish, crabs or shrimp captured with fyke nets between the natural and restored marshes, and only the abundance of Palaemonetes vulgaris (grass shrimp) was significantly greater in the natural marshes than in the restored ones. Mean numbers of fish caught per 5 m of marsh front were similar to those reported in the literature from marshes adjacent to tidal creeks and channels, and ranged between 509 and 634 fish net−1. Most of the field data and some of the sample analyses were obtained by volunteers as they contributed 223 h of the total 300 h spent collecting data from three sites in one season. The use of fyke nets required twice as many man-hours as any other single task. Vegetation and sediment parameters were sensitive indicators of marsh restoration success, and volunteers were capable of contributing a significant portion of the labor needed to collect these parameters. The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

9.
Hydro-ecological analysis of the Biebrza mire (Poland)   总被引:2,自引:0,他引:2  
Vegetation composition and structure of 58 sites along gradients in the valley mire of Biebrza, Poland, are related to physical and chemical variables of groundwater and peat. The three most prominent hydrochemical processes in the valley are (a) dissolution of calcite; (b) dissolution of iron, manganese and aluminium; and (c) enrichment with nitrogen and potassium. Major factors determining these processes are vertical flow of the groundwater and river flooding.Within the rheophilous zone of the mire, calcium-richness of the shallow groundwater and base-saturation of the peat are caused by upward seepage of groundwater originating from adjacent higher grounds. This groundwater movement keeps the larger part of the mire saturated with calcium.Good correlations exist between hydrochemistry and vegetation patterns. Groundwater-fed sites support a characteristic rich fen vegetation (Caricetum limoso-diandrae) with a low biomass production. The flood-plain vegetation consists of highly-productive communities of Glycerietum maximae and Caricetum elatae. In a belt in the Upper Basin where neither flooding nor upward seepage occurs, succession, probably caused by intensified drainage, leads to a dwarf-shrub vegetation (Betuletum humilis; poor fen).  相似文献   

10.
Abstract. Salt marshes along the Atlantic coast of France have been converted into solar salt pans since the 7th century. Salt production declined strongly from the 18th century onward, leading to the abandonment of many of these salt pans. High soil salinity is a residue from the original salt production and varies among salt pans according to time since abandonment, the current flooding regime and the effect of drainage measures. The relationships between the plant communities and seven environmental variables were investigated by Detrended Correspondence Analyses (DCA). Duration of flooding, electric conductivity and sodium saturation were most strongly related to variation in vegetation. The Heleo‐chareto‐Hippuridetum vulgaris and the Caricetum ripariae occur in lagoons with slightly saline soil that are flooded for the longest time period; the Scirpetum maritimi compacti occurs in salt pans with saline soil flooded for a long period; the Alopecuro‐Juncetum gerardii occurs on saline soil where flooding is of short duration whereas the Carici‐Lolietum perennis is never flooded and occurs on only slightly saline soil. Soil salinity and duration of flooding provide a satisfactory explanation of the variation in species composition in abandoned salt pans but land‐use practices, especially grazing, have to be taken into account to fully understand their floristic composition.  相似文献   

11.
12.
We used the Braun-Blanquet method to study the vegetation of coastal wetlands in South Korea. Three habitat types were found, i.e., salt marshes, salt swamps, and sand dunes. These plant communities were classified as: 1) two groups (five associations each) in the salt marshes that comprised either annual herbaceous halophytes (ClassThero-Salicornietea), or biennial/perennial herbaceous species (ClassAsteretea tripolii); 2) one group in the salt swamps consisting of five hydrophilous halo-tolerant associations (ClassPhragmitetea); and 3) three groups in the sand dunes, including one association of annual herbaceous halophytes (ClassSalsoletea komarovii), seven associations of herbaceous perennial halophytes (ClassGlehnietea littoralis), and one association of shrub perennial halophytes (ClassVrticetea rotundifoliae). These three habitat types accounted for the majority of the six main classifications of coastal vegetation distributed in South Korea.  相似文献   

13.
Salt marshes and the organisms that depend on them are subject to a variety of anthropogenic threats. In Florida, Worthington’s Marsh Wrens (Cistothorus palustris griseus) and MacGillivray’s Seaside Sparrows (Ammospiza maritima macgillivraii) are species of concern that inhabit a small, narrow range of salt marsh in the northeastern corner of the state, an area of increasing human development. The historic ranges of these subspecies encompassed salt marshes in five counties, but their ranges had contracted to just two counties by the early 2000s and their populations declined. We surveyed the historic ranges of the two subspecies during the breeding seasons of 2014 and 2015 to document their distributions, identify habitat features that influenced occupancy and density, and assess whether any recolonization had occurred in areas previously abandoned. We found that the ranges of both subspecies remained relatively stable compared to the early 2000s, with no signs of either further contraction or recolonization. Both Marsh Wrens and Seaside Sparrows were more likely to occupy areas farther from uplands. Marsh Wren occupancy was positively associated with marshes dominated by smooth cordgrass (Spartina alterniflora) and negatively associated with marshes dominated by black needlerush (Juncus roemerianus). Seaside Sparrows were more likely to occur at sites of moderate elevation. We found greater densities of both subspecies in areas farther from uplands, with moderate elevations, and dense vegetation. Marsh Wren density also increased in smooth cordgrass marshes, whereas sparrow numbers increased in areas of moderate vegetation height. Despite these differences between subspecies, the need for dense vegetation away from uplands highlights the importance of smooth cordgrass marshes in the region.  相似文献   

14.
To assess the natural range in habitat parameters of the once common rich-fen bryophyte Scorpidium scorpioides, water chemistry and vegetation were studied in different regions characteristic of its NW-European distribution area: the Netherlands, Ireland, Denmark and Fennoscandia. Scorpidium scorpioides was found in an environment with circumneutral pH. The variation in solute content and composition was large and nutrient (N and P) concentrations ranged from zero to values indicative of more eutrophic conditions. Six different vegetation types with S. scorpioides were distinguished, resembling Caricion davallianae, Caricion curto-nigrae and Hydrocotylo-Baldellion communities. Type of substrate and solute levels were strongly correlated with the first ordination axis (DCA) and nutrient status and geographic position with the second axis. Habitat and vegetation characteristics in Dutch rich-fens with S. scorpioides indicated that mineral status was higher than in Fennoscandia and Ireland; solute-poor habitats with S. scorpioides have disappeared from the Netherlands. Trophic status was higher in the Netherlands than in Fennoscandia, but in some cases lower than in Ireland. Acidification and eutrophication may have played a role in the decrease of the species in the Netherlands. However, the wide ecological ranges suggest that the decrease of S. scorpioides is not a physiological effect of unsuitable environmental conditions per se.  相似文献   

15.
Displacement of native plant species by non‐indigenous congeners may affect associated faunal assemblages. In endangered salt marshes of south‐east Australia, the non‐indigenous rush Juncus acutus is currently displacing the native rush Juncus kraussii, which is a dominant habitat‐forming species along the upper border of coastal salt marshes. We sampled insect assemblages on multiple plants of these congeneric rushes in coastal salt marshes in Sydney, New South Wales, Australia, and compared the abundance, richness, diversity, composition and trophic structure between: (i) J. acutus and J. kraussii at invaded locations; and (ii) J. kraussii at locations either invaded or not invaded by J. acutus. Although J. acutus supported a diverse suite of insects, species richness and diversity were significantly greater on the native J. kraussii. Moreover, insect assemblages associated with J. kraussii at sites invaded by J. acutus were significantly different from, and more variable than, those on J. kraussii at non‐invaded sites. The trophic structure of the insect assemblages was also different, including the abundance and richness of predators and herbivores, suggesting that J. acutus may be altering consumer interactions, and may be spreading in part because of a reduction in herbivory. This strongly suggests that J. acutus is not playing a functionally similar role to J. kraussii with respect to the plant‐associated insect species assemblages. Consequently, at sites where this non‐indigenous species successfully displaces the native congener, this may have important ecological consequences for community composition and functioning of these endangered coastal salt marshes.  相似文献   

16.
Efforts are underway to restore tidal flow in New England salt marshes that were negatively impacted by tidal restrictions. We evaluated a planned tidal restoration at Mill Brook Marsh (New Hampshire) and at Drakes Island Marsh (Maine) where partial tidal restoration inadvertently occurred. Salt marsh functions were evaluated in both marshes to determine the impacts from tidal restriction and the responses following restoration. Physical and biological indicators of salt marsh functions (tidal range, surface elevations, soil water levels and salinities, plant cover, and fish use) were measured and compared to those from nonimpounded reference sites. Common impacts from tidal restrictions at both sites were: loss of tidal flooding, declines in surface elevation, reduced soil salinity, replacement of salt marsh vegetation by fresh and brackish plants, and loss of fish use of the marsh.Water levels, soil salinities and fish use increased immediately following tidal restoration. Salt-intolerant vegetation was killed within months. After two years, mildly salt-tolerant vegetation had been largely replaced in Mill Brook Marsh by several species characteristic of both high and low salt marshes. Eight years after the unplanned, partial tidal restoration at Drakes Island Marsh, the vegetation was dominated bySpartina alterniflora, a characteristic species of low marsh habitat.Hydrologic restoration that allowed for unrestricted saltwater exchange at Mill Brook restored salt marsh functions relatively quickly in comparison to the partial tidal restoration at Drakes Island, where full tidal exchange was not achieved. The irregular tidal regime at Drakes Island resulted in vegetation cover and patterns dissimilar to those of the high marsh used as a reference. The proper hydrologic regime (flooding height, duration and frequency) is essential to promote the rapid recovery of salt marsh functions. We predict that functional recovery will be relatively quick at Mill Brook, but believe that the habitat at Drakes Island will not become equivalent to that of the reference marsh unless the hydrology is further modified.Corresponding Editor: R.E. Turner Manuseript  相似文献   

17.
Alendal, E., de Bie, S. and van Wieren, S. E. 1979. Size and composition of the wild reindeer Rangifer tarandus platyrhynchus population in the Southeast Svalbard Nature Reserve. Holarct. Ecol. 2: 101-107. In the summer of 1977 we studied the reindeer population on the islands Barentsøya and Edgeøya in the eastern part of the Svalbard archipelago. A total of 1374 reindeer were observed: 326 animals in the western parts of Barentsøya and 1048 animals on Edgeøya. Considering those parts of Edgeøya which were not visited, the total number of reindeer on Edgeøya was estimated at 1300 animals. The total number of reindeer was lower than in previous years. The decline probably was due to severe winter conditions in 1975/1976 and 1976/1977 confirmed by the fact that many carcasses and few yearlings were observed. Nearly all reindeer occurred on the coastal plains and in the valleys. These areas have the relatively richest vegetation. The average recruitment of the total population (counted) was 15.9%. The adult sex ratio was in favour of females: 59% females versus 41% males. There were differences both in the recruitment and in the adult sex ratio between three distinct areas on Edgeøya and between two on Barentsøya. These differences may be due to dissimilarities in food quality and feeding conditions caused by climate, and by small exchange of reindeer between the areas. The high frequency of shed male antlers on Frankenhalvøya and Talaveraflya, north and south coast of Barentsøya respectively, indicates that these areas belong to the wintering grounds of reindeer on this island. Concentrations of shed female antlers on Barentsøya were less pronounced. The highest frequency was in the areas Sjodalen and Kvistdalen-Talaveraflya in the northwest and south respectively. Females may use these areas as late wintering grounds and possibly as calving areas. The average group size was 2.2 and the aggregation index 3.1. Seventytwo per cent of all groups, containing 48% of all reindeer, fell into group size 1 and 2. Males mostly were observed alone or together with one other animal. Females with calves most frequently occurred in groups of 2 and 4 animals.  相似文献   

18.
Jana Gesina Engels  Kai Jensen 《Oikos》2010,119(4):679-685
Understanding the mechanisms that shape plant distribution patterns is a major goal in ecology. We investigated the role of biotic interactions (competition and facilitation) and abiotic factors in creating horizontal plant zonation along salinity gradients in the Elbe estuary. We conducted reciprocal transplant experiments with four dominant species from salt and tidal freshwater marshes at two tidal elevations. Ten individuals of each species were transplanted as sods to the opposing marsh type and within their native marsh (two sites each). Transplants were placed at the centre of 9‐m2 plots along a line parallel to the river bank. In order to disentangle abiotic and biotic influences, we set up plots with and without neighbouring vegetation, resulting in five replicates per site. Freshwater species (Bolboschoenus maritimus and Phragmites australis) transplanted to salt marshes performed poorly regardless of whether neighbouring vegetation was present or not, although 50–70% of the transplants did survive. Growth of Phragmites transplants was impaired also by competition in freshwater marshes. Salt marsh species (Spartina anglica and Puccinellia maritima) had extremely low biomass when transplanted to freshwater marshes and 80–100% died in the presence of neighbours. Without neighbours, biomass of salt marsh species in freshwater marshes was similar to or higher than that in salt marshes. Our results indicate that salt marsh species are precluded from freshwater marshes by competition, whereas freshwater species are excluded from salt marshes by physical stress. Thus, our study provides the first experimental evidence from a European estuary for the general theory that species boundaries along environmental gradients are determined by physical factors towards the harsh end and by competitive ability towards the benign end of the gradient. We generally found no significant impact of competition in salt marshes, indicating a shift in the importance of competition along the estuarine gradient.  相似文献   

19.
Nine vegetation types were distinguished using cluster analysis within Molinion meadows in Slovakia. Vegetation of cluster 1 occurs on most acidic soils and is characterized by the occurrence of species of the Caricion fuscae alliance and of the Nardus grasslands. Vegetation of cluster 2 is also found on rather acidic soils but in contrast to cluster 1 vegetation it contains species of base-rich sites, such as Betonica officinalis, Galium boreale or Serratula tinctoria. Vegetation of cluster 3 occurs in wet base-rich habitats and often contains species of the Caricion davallianae alliance. Species of dry and Nardus grasslands are typical for vegetation of cluster 4, which is found at the driest sites and is confined to oligotrophic sandy soils. Vegetation of clusters 5 and 6 occurs on moist mesotrophic soils. Their species composition is quite similar, the main difference being that the former includes species-poor relevés and the latter includes species-rich relevés. Relevés of cluster 7 include species of dry grasslands and some ruderal species and represent degraded types of inundated floodplain meadows of the Deschampsion alliance. Vegetation of clusters 8 is characterized by species of the Phragmito-Magnocaricetea class and of the Deschampsion alliance, and occurs in wet nutrient-rich habitats. Vegetation of cluster 9, which usually develops from vegetation of cluster 8 due to decrease in the ground-water table, often contains species of dry grasslands and mesic meadows. Except for relevés of clusters 1 and 7, all others can be assigned to the Molinietum caeruleae Koch 1926 association. Cluster 1 corresponds to the Junco effusi-Molinietum caeruleae Tüxen 1954 association. Average Ellenberg indicator values for relevés, which were passively projected on the ordination biplot of detrended correspondence analysis, showed that the first ordination axis correlates with nutrients, soil base status and temperature, and second axis with moisture.  相似文献   

20.
Densities of nekton and other fauna were measured inthree created salt marshes to examine habitatdevelopment rate. All three marshes were located onPelican Spit in Galveston Bay, Texas, USA and werecreated on dredged material from the Gulf IntracoastalWaterway. The youngest marsh was planted on 1-mcenters in July of 1992. At the time sampling wasinitiated in fall 1992, the marshes were 9, 5, andless than 1 year in age; sampling continued in thefall and spring through spring 1994. Animaldensities were measured within the vegetation at twoelevations using an enclosure sampler. In the fall of1992, 4 months following the planting of the 92Marsh,densities of most marsh organisms were lower in thismarsh compared with the older two marshes. Significantly lower densities were observed fordominant crustaceans (including three species of grassshrimps, two species of commercially-important penaeidshrimps, thinstripe hermit crabs Clibanarius vittatus,and juvenile blue crabs Callinectes sapidus), adominant fish (Gobionellus boleosoma), and thedominant mollusc (Littoraria irrorata). By the fallof 1993, however, densities of most nekton specieswere similar among the three created salt marshes. Incontrast, reduced densities of less mobile epifauna(C. vittatusand L. irrorata) persisted in the 92Marshthroughout the 2 years of sampling. The patterns ofnekton utilization exhibited in these marshes suggestthat the 92Marsh reached its maximum habitat supportfunction for these animals in less than 1 year. Comparisons of the older marshes with natural marshesin the bay system, however, suggest that all three ofthese created marshes are functioning at lower levelsthan natural marshes in terms of supporting productionof commercially important fishery species such aspenaeid shrimps and C. sapidus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号