首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of investment per offspring (I) is often viewed through the lens of the classic theory, in which variation among individuals in a population is not expected. A substantial departure from this prediction arises in the form of correlations between maternal body size and I, which are observed within populations in virtually all taxonomic groups. Based on the generality of this observation, we suggest it is caused by a common underlying mechanism. We pursue a unifying explanation for this pattern by reviewing all theoretical models that attempt to explain it. We assess the generality of the mechanism upon which each model is based, and the extent to which data support its predictions. Two classes of adaptive models are identified: models that assume that the correlation arises from maternal influences on the relationship between I and offspring fitness [w(I)], and those that assume that maternal size influences the relationship between I and maternal fitness [W(I)]. The weight of evidence suggests that maternal influences on w(I) are probably not very general, and even for taxa where maternal influences on w(I) are likely, experiments fail to support model predictions. Models that assume that W(I) varies with maternal size appear to offer more generality, but the current challenge is to identify a specific and general mechanism upon which W(I) varies predictably with maternal size. Recent theory suggests the exciting possibility that a yet unknown mechanism modifies the offspring size–number trade‐off function in a manner that is predictable with respect to maternal size, such that W(I) varies with size. We identify two promising avenues of inquiry. First, the trade‐off might be modified by energetic costs that are associated with the initiation of reproduction (‘overhead costs’) and that scale with I, and future work could investigate what specific overhead costs are generally associated with reproduction and whether these costs scale with I. Second, the trade‐off might be modified by virtue of condition‐dependent offspring provisioning coupled with metabolic factors, and future work could investigate the proximate cause of, and generality of, condition‐dependent offspring provisioning. Finally, drawing on the existing literature, we suggest that maternal size per se is not causatively related to variation in I, and the mechanism involved in the correlation is instead linked to maternal nutritional status or maternal condition, which is usually correlated with maternal size. Using manipulative experiments to elucidate why females with high nutritional status typically produce large offspring might help explain what specific mechanism underlies the maternal‐size correlation.  相似文献   

2.
1. Smallmouth bass (Micropterus dolomieu) have been widely introduced to fresh waters throughout the world to promote recreational fishing opportunities. In the Pacific Northwest (U.S.A.), upstream range expansions of predatory bass, especially into subyearling salmon‐rearing grounds, are of increasing conservation concern, yet have received little scientific inquiry. Understanding the habitat characteristics that influence bass distribution and the timing and extent of bass and salmon overlap will facilitate the development of management strategies that mitigate potential ecological impacts of bass. 2. We employed a spatially continuous sampling design to determine the extent of bass and subyearling Chinook salmon (Oncorhynchus tshawytscha) sympatry in the North Fork John Day River (NFJDR), a free‐flowing river system in the Columbia River Basin that contains an upstream expanding population of non‐native bass. Extensive (i.e. 53 km) surveys were conducted over 2 years and during an early and late summer period of each year, because these seasons provide a strong contrast in the river’s water temperature and flow condition. Classification and regression trees were applied to determine the primary habitat correlates of bass abundance at reach and channel‐unit scales. 3. Our study revealed that bass seasonally occupy up to 22% of the length of the mainstem NFJDR where subyearling Chinook salmon occur, and the primary period of sympatry between these species was in the early summer and not during peak water temperatures in late summer. Where these species co‐occurred, bass occupied 60–76% of channel units used by subyearling Chinook salmon in the early summer and 28–46% of the channel units they occupied in the late summer. Because these rearing salmon were well below the gape limitation of bass, this overlap could result in either direct predation or sublethal effects of bass on subyearling Chinook salmon. The upstream extent of bass increased 10–23 km (2009 and 2010, respectively) as stream temperatures seasonally warmed, but subyearling Chinook salmon were also found farther upstream during this time. 4. Our multiscale analysis suggests that bass were selecting habitat based on antecedent thermal history at a broad scale, and if satisfactory temperature conditions were met, mesoscale habitat features (i.e. channel‐unit type and depth) played an additional role in determining bass abundance. The upstream extent of bass in the late summer corresponded to a high‐gradient geomorphic discontinuity in the NFJDR, which probably hindered further upstream movements of bass. The habitat determinants and upstream extent of bass were largely consistent across years, despite marked differences in the magnitude and timing of spring peak flows prior to bass spawning. 5. The overriding influence of water temperature on smallmouth bass distribution suggests that managers may be able limit future upstream range expansions of bass into salmon‐rearing habitat by concentrating on restoration activities that mitigate climate‐ or land‐use‐related stream warming. These management activities could be prioritised to capitalise on survival bottlenecks in the life history of bass and spatially focused on landscape knick points such as high‐gradient discontinuities to discourage further upstream movements of bass.  相似文献   

3.
Life‐history traits such as fecundity and offspring size are shaped by investment trade‐offs faced by mothers and mediated by environmental conditions. We use a 21‐year time series for three populations of wild sockeye salmon (Oncorhynchus nerka) to test predictions for such trade‐offs and responses to conditions faced by females during migration, and offspring during incubation. In years when their 1100 km upstream migration was challenged by high water discharges, females that reached spawning streams had invested less in gonads by producing smaller but not fewer eggs. These smaller eggs produced lighter juveniles, and this effect was further amplified in years when the incubation water was warm. This latter result suggests that there should be selection for larger eggs to compensate in populations that consistently experience warm incubation temperatures. A comparison among 16 populations, with matching migration and rearing environments but different incubation environments (i.e., separate spawning streams), confirmed this prediction; smaller females produced larger eggs for their size in warmer creeks. Taken together, these results reveal how maternal phenotype and environmental conditions can shape patterns of reproductive investment and consequently juvenile fitness‐related traits within and among populations.  相似文献   

4.
Spatial distribution and habitat selection are integral to the study of animal ecology. Habitat selection may optimize the fitness of individuals. Hutchinsonian niche theory posits the fundamental niche of species would support the persistence or growth of populations. Although niche‐based species distribution models (SDMs) and habitat suitability models (HSMs) such as maximum entropy (Maxent) have demonstrated fair to excellent predictive power, few studies have linked the prediction of HSMs to demographic rates. We aimed to test the prediction of Hutchinsonian niche theory that habitat suitability (i.e., likelihood of occurrence) would be positively related to survival of American beaver (Castor canadensis), a North American semi‐aquatic, herbivorous, habitat generalist. We also tested the prediction of ideal free distribution that animal fitness, or its surrogate, is independent of habitat suitability at the equilibrium. We estimated beaver monthly survival probability using the Barker model and radio telemetry data collected in northern Alabama, United States from January 2011 to April 2012. A habitat suitability map was generated with Maxent for the entire study site using landscape variables derived from the 2011 National Land Cover Database (30‐m resolution). We found an inverse relationship between habitat suitability index and beaver survival, contradicting the predictions of niche theory and ideal free distribution. Furthermore, four landscape variables selected by American beaver did not predict survival. The beaver population on our study site has been established for 20 or more years and, subsequently, may be approaching or have reached the carrying capacity. Maxent‐predicted increases in habitat use and subsequent intraspecific competition may have reduced beaver survival. Habitat suitability‐fitness relationships may be complex and, in part, contingent upon local animal abundance. Future studies of mechanistic SDMs incorporating local abundance and demographic rates are needed.  相似文献   

5.
Climate change and habitat loss are both key threatening processes driving the global loss in biodiversity. Yet little is known about their synergistic effects on biological populations due to the complexity underlying both processes. If the combined effects of habitat loss and climate change are greater than the effects of each threat individually, current conservation management strategies may be inefficient and at worst ineffective. Therefore, there is a pressing need to identify whether interacting effects between climate change and habitat loss exist and, if so, quantify the magnitude of their impact. In this article, we present a meta‐analysis of studies that quantify the effect of habitat loss on biological populations and examine whether the magnitude of these effects depends on current climatic conditions and historical rates of climate change. We examined 1319 papers on habitat loss and fragmentation, identified from the past 20 years, representing a range of taxa, landscapes, land‐uses, geographic locations and climatic conditions. We find that current climate and climate change are important factors determining the negative effects of habitat loss on species density and/or diversity. The most important determinant of habitat loss and fragmentation effects, averaged across species and geographic regions, was current maximum temperature, with mean precipitation change over the last 100 years of secondary importance. Habitat loss and fragmentation effects were greatest in areas with high maximum temperatures. Conversely, they were lowest in areas where average rainfall has increased over time. To our knowledge, this is the first study to conduct a global terrestrial analysis of existing data to quantify and test for interacting effects between current climate, climatic change and habitat loss on biological populations. Understanding the synergistic effects between climate change and other threatening processes has critical implications for our ability to support and incorporate climate change adaptation measures into policy development and management response.  相似文献   

6.
Environmental factors influence variation in life histories by affecting growth, development, and reproduction. We conducted an experiment in outdoor mesocosms to examine how diet and a time constraint on juvenile development (pond‐drying) influence life‐history trade‐offs (growth, development, adult body mass) in the caddis fly Limnephilus externus (Trichoptera: Limnephilidae). We predicted that: (1) diet supplementation would accelerate larval growth and development, and enhance survival to adulthood; (2) pond‐drying would accelerate development and increase larval mortality; and (3) the relationship between adult mass and age at maturity would be negative. Diet supplementation did lead to larger adult mass under nondrying conditions, but did not significantly alter growth or development rates. Contrary to predictions, pond‐drying reduced growth rates and delayed development. The slope (positive or negative) of the female mass–age at maturity relationship depended on interactions with diet or pond‐drying, but the male mass–age relationship was negative and independent of treatment. Our results suggest that pond‐drying can have negative effects on the future fitness of individuals by increasing the risk of desiccation‐induced, pre‐reproductive mortality and decreasing adult body size at maturity. These negative effects on life history cannot be overcome with additional nutritional resources in this species. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 495–504.  相似文献   

7.
Environmental variability can lead to dispersal: why stay put if it is better elsewhere? Without clues about local conditions, the optimal strategy is often to disperse a set fraction of offspring. Many habitats contain environmentally differing sub‐habitats. Is it adaptive for individuals to sense in which sub‐habitat they find themselves, using environmental clues, and respond plastically by altering the dispersal rates? This appears to be done by some plants which produce dimorphic seeds with differential dispersal properties in response to ambient temperature. Here we develop a mathematical model to show, that in highly variable environments, not only does sensing promote plasticity of dispersal morph ratio, individuals who can sense their sub‐habitat and respond in this way have an adaptive advantage over those who cannot. With a rise in environmental variability due to climate change, our understanding of how natural populations persist and respond to changes has become crucially important.  相似文献   

8.
The river‐resident Salmo salar (“småblank”) has been isolated from other Atlantic salmon populations for 9,500 years in upper River Namsen, Norway. This is the only European Atlantic salmon population accomplishing its entire life cycle in a river. Hydropower development during the last six decades has introduced movement barriers and changed more than 50% of the river habitat to lentic conditions. Based on microsatellites and SNPs, genetic variation within småblank was only about 50% of that in the anadromous Atlantic salmon within the same river. The genetic differentiation (FST) between småblank and the anadromous population was 0.24. This is similar to the differentiation between anadromous Atlantic salmon in Europe and North America. Microsatellite analyses identified three genetic subpopulations within småblank, each with an effective population size Ne of a few hundred individuals. There was no evidence of reduced heterozygosity and allelic richness in contemporary samples (2005–2008) compared with historical samples (1955–56 and 1978–79). However, there was a reduction in genetic differentiation between sampling localities over time. SNP data supported the differentiation of småblank into subpopulations and revealed downstream asymmetric gene flow between subpopulations. In spite of this, genetic variation was not higher in the lower than in the upper areas. The meta‐population structure of småblank probably maintains genetic variation better than one panmictic population would do, as long as gene flow among subpopulations is maintained. Småblank is a unique endemic island population of Atlantic salmon. It is in a precarious situation due to a variety of anthropogenic impacts on its restricted habitat area. Thus, maintaining population size and avoiding further habitat fragmentation are important.  相似文献   

9.
Understanding the genetic architecture of phenotypic plasticity is required to assess how populations might respond to heterogeneous or changing environments. Although several studies have examined population‐level patterns in environmental heterogeneity and plasticity, few studies have examined individual‐level variation in plasticity. Here, we use the North Carolina II breeding design and translocation experiments between two populations of Chinook salmon to detail the genetic architecture and plasticity of offspring survival and growth. We followed the survival of 50 800 offspring through the larval stage and used parentage analysis to examine survival and growth through freshwater rearing. In one population, we found that additive genetic, nonadditive genetic and maternal effects explained 25%, 34% and 55% of the variance in larvae survival, respectively. In the second population, these effects explained 0%, 24% and 61% of the variance in larvae survival. In contrast, fry survival was regulated primarily by additive genetic effects, which indicates a shift from maternal to genetic effects as development proceeds. Fry growth also showed strong additive genetic effects. Translocations between populations revealed that offspring survival and growth varied between environments, the degree of which differed among families. These results indicate genetic differences among individuals in their degree of plasticity and consequently their ability to respond to environmental variation.  相似文献   

10.
Abstract Polymorphisms in fruit colour are common in nature, but mechanistic explanations for the factor(s) responsible for their maintenance are for the most part lacking. Past studies have focused on frugivore colour preferences and fruit removal rates, but until recently there has been no evidence that these factors are responsible for the maintenance of the polymorphisms. For other types of genetic polymorphisms, habitat heterogeneity has been shown to play a role in their maintenance. Here we test the habitat heterogeneity hypothesis for a polymorphic New Zealand mistletoe. We show that red‐fruited and orange‐fruited morphs of the mistletoe Alepis flavida (Hook. F) Tiegh. (Loranthaceae) differ in their growth, mortality and flowering on forest edges and in forest interior. Red‐fruited morphs, which are preferred by dispersers, grew, survived and flowered as well as orange‐fruited morphs on edges, whereas orange‐fruited morphs had much greater growth, survival, and flowering than red‐fruited morphs in the forest interior. This is the first evidence that habitat‐specific differences in growth and survival may contribute to maintaining fruit‐colour polymorphisms.  相似文献   

11.
Species distributions are influenced by variation in environmental conditions across many scales. Knowledge of fine‐scale habitat requirements is important for predicting species occurrence and identifying suitable habitat for target species. Here we investigate the perplexing distribution of a riparian habitat specialist, the western subspecies of the purple‐crowned fairy‐wren (Malurus coronatus coronatus), in relation to fine‐scale habitat associations and patterns of riparian degradation. Surveys of vegetation attributes, river structure and disturbance indicators that are likely to be causal determinants of the species occurrence were undertaken at 635 sites across 14 catchments. Generalized Linear Mixed Modelling demonstrated that the probability of purple‐crowned fairy‐wren occurrence increased with Pandanus aquaticus crown cover, shrub density and height of emergent trees, while riparian structure and signs of cattle were indirect predictors of occurrence. As our study area predominantly contained Pandanus type habitat, we failed to identify river grass as an important component of habitat. Predictions from a cross‐validated model of purple‐crowned fairy‐wren occurrence suggested distribution is constrained by three factors: (i) low quality of local habitat within catchments where the species occurs; (ii) broad‐scale reduction in habitat quality that has resulted in extinction of the species from parts of its range; and (iii) unmeasured variables that limit the exploitation of suitable habitat. The reliance of the species on dense shrubby understorey suggests conservation efforts should aim to maintain the complexity of understorey structure by managing fire and grazing intensity. Efforts to halt the continuing decline of riparian condition and maintain connectivity between areas of quality habitat will help to ensure persistence of riparian habitat specialists in northern Australia.  相似文献   

12.
A life‐history trade‐off exists between flight capability and reproduction in many wing dimorphic insects: a long‐winged morph is flight‐capable at the expense of reproduction, while a short‐winged morph cannot fly, is less mobile, but has greater reproductive output. Using meta‐analyses, I investigated specific questions regarding this trade‐off. The trade‐off in females was expressed primarily as a later onset of egg production and lower fecundity in long‐winged females relative to short‐winged females. Although considerably less work has been done with males, the trade‐off exists for males among traits primarily related to mate acquisition. The trade‐off can potentially be mitigated in males, as long‐winged individuals possess an advantage in traits that can offset the costs of flight capability such as a shorter development time. The strength and direction of trends differed significantly among insect orders, and there was a relationship between the strength and direction of trends with the relative flight capabilities between the morphs. I discuss how the trade‐off might be both under‐ and overestimated in the literature, especially in light of work that has examined two relevant aspects of wing dimorphic species: (1) the effect of flight‐muscle histolysis on reproductive investment; and (2) the performance of actual flight by flight‐capable individuals.  相似文献   

13.
Individual animal fitness can be strongly influenced by the ability to recognize habitat features which may be beneficial. Many studies focus on the effects of habitat on annual reproductive rate, even though adult survival is typically a greater influence on fitness and population growth in vertebrate species with intermediate to long lifespans. Understanding the effects of preferred habitat on individuals over the annual cycle is therefore necessary to predict its influences on individual fitness. This is particularly true in species that are resident and territorial year‐round in the temperate zone, which may face potential trade‐offs between habitat that maximizes reproduction and that which maximizes non‐breeding season (‘over‐winter’) survival. We used a 37‐year study of Song Sparrows Melospiza melodia residing territorially year‐round on a small island to examine what habitat features influenced adult over‐winter survival, how site‐specific variation in adult survival vs. annual reproductive rate influenced long‐term habitat preference, and if preferred sites on average conferred higher individual fitness. Habitat features such as area of shrub cover and exposure to intertidal coastline predicted adult over‐winter survival independent of individual age or sex, population size, or winter weather. Long‐term habitat preference (measured as occupation rate) was better predicted by site‐specific annual reproductive rate than by expected over‐winter survival, but preferred sites maximized fitness on average over the entire annual cycle,. Although adult over‐winter survival had a greater influence on population growth (λ) than did reproductive rate, the influence of reproductive rate on λ increased in preferred sites because site‐specific variation in reproductive rate was higher than variation in expected over‐winter survival. Because preferred habitats tended to have higher mean site‐specific reproductive and adult survival rates, territorial birds in this population do not appear to experience seasonal trade‐offs in preferred habitat but are predicted to incur substantial fitness costs of settling in less‐preferred sites.  相似文献   

14.
Four Atlantic salmon Salmo salar stocks in the Baltic Sea, varying in their breeding history, were studied for changes in life‐history traits over the years 1972–1995. Total length (LT) at age of captured (LTC) fish had increased throughout the study period, partly due to increased temperature and increased LT at release, (LTR) but also due to remaining cohort effects that could represent unaccounted environmental or genetic change. Simultaneously, maturation probabilities controlled for water temperature, LTC and LTR had increased in all stocks. The least change was observed in the River Tornionjoki S. salar that was subject only to supportive stockings originating from wild parents. These results suggest a long‐term divergence between semi‐natural and broodstock‐based S. salar stocks. Increased LT at age explained advanced maturation only marginally, and it remains an open question to what extent the generally increased probabilities to mature at early age reflected underlying genetic changes.  相似文献   

15.
16.
Animals select habitats that will ultimately optimize their fitness through access to favorable resources, such as food, mates, and breeding sites. However, access to these resources may be limited by bottom‐up effects, such as availability, and top‐down effects, such as risk avoidance and competition, including that with humans. Competition between wildlife and people over resources, specifically over space, has played a significant role in the worldwide decrease in large carnivores. The goal of this study was to determine the habitat selection of cheetahs (Acinonyx jubatus) in a human‐wildlife landscape at multiple spatial scales. Cheetahs are a wide‐ranging, large carnivore, whose significant decline is largely attributed to habitat loss and fragmentation. It is believed that 77% of the global cheetah population ranges outside protected areas, yet little is known about cheetahs’ resource use in areas where they co‐occur with people. The selection, or avoidance, of three anthropogenic variables (human footprint density, distance to main roads and wildlife areas) and five environmental variables (open habitat, semiclosed habitat, edge density, patch density and slope), at multiple spatial scales, was determined by analyzing collar data from six cheetahs. Cheetahs selected variables at different scales; anthropogenic variables were selected at broader scales (720–1440 m) than environmental variables (90–180 m), suggesting that anthropogenic pressures affect habitat selection at a home‐range level, whilst environmental variables influence site‐level habitat selection. Cheetah presence was best explained by human presence, wildlife areas, semiclosed habitat, edge density and slope. Cheetahs showed avoidance for humans and steep slopes and selected for wildlife areas and areas with high proportions of semiclosed habitat and edge density. Understanding a species’ resource requirements, and how these might be affected by humans, is crucial for conservation. Using a multiscale approach, we provide new insights into the habitat selection of a large carnivore living in a human‐wildlife landscape.  相似文献   

17.
Genetic connectivity is expected to be lower in species with limited dispersal ability and a high degree of habitat specialization (intrinsic factors). Also, gene flow is predicted to be limited by habitat conditions such as physical barriers and geographic distance (extrinsic factors). We investigated the effects of distance, intervening pools, and rapids on gene flow in a species, the Tuxedo Darter (Etheostoma lemniscatum), a habitat specialist that is presumed to be dispersal‐limited. We predicted that the interplay between these intrinsic and extrinsic factors would limit dispersal and lead to genetic structure even at the small spatial scale of the species range (a 38.6 km river reach). The simple linear distribution of E. lemniscatum allowed for an ideal test of how these factors acted on gene flow and allowed us to test expectations (e.g., isolation‐by‐distance) of linearly distributed species. Using 20 microsatellites from 163 individuals collected from 18 habitat patches, we observed low levels of genetic structure that were related to geographic distance and rapids, though these factors were not barriers to gene flow. Pools separating habitat patches did not contribute to any observed genetic structure. Overall, E. lemniscatum maintains gene flow across its range and is comprised of a single population. Due to the linear distribution of the species, a stepping‐stone model of dispersal best explains the maintenance of gene flow across its small range. In general, our observation of higher‐than‐expected connectivity likely stems from an adaptation to disperse due to temporally unstable and patchy habitat.  相似文献   

18.
Tooth wear is generally an age‐related phenomenon, often assumed to occur at similar rates within populations of primates and other mammals, and has been suggested as a correlate of reduced offspring survival among wild lemurs. Few long‐term wild studies have combined detailed study of primate behavior and ecology with dental analyses. Here, we present data on dental wear and tooth loss in older (>10 years old) wild and captive ring‐tailed lemurs (Lemur catta). Among older ring‐tailed lemurs at the Beza Mahafaly Special Reserve (BMSR), Madagascar (n=6), the percentage of severe dental wear and tooth loss ranges from 6 to 50%. Among these six individuals, the oldest (19 years old) exhibits the second lowest frequency of tooth loss (14%). The majority of captive lemurs at the Indianapolis Zoo (n=7) are older than the oldest BMSR lemur, yet display significantly less overall tooth wear for 19 of 36 tooth positions, with only two individuals exhibiting antemortem tooth loss. Among the captive lemurs, only one lemur (a nearly 29 year old male) has lost more than one tooth. This individual is only missing anterior teeth, in contrast to lemurs at BMSR, where the majority of lost teeth are postcanine teeth associated with processing specific fallback foods. Postcanine teeth also show significantly more overall wear at BMSR than in the captive sample. At BMSR, degree of severe wear and tooth loss varies in same aged, older individuals, likely reflecting differences in microhabitat, and thus the availability and use of different foods. This pattern becomes apparent before “old age,” as seen in individuals as young as 7 years. Among the four “older” female lemurs at BMSR, severe wear and/or tooth loss do not predict offspring survival. Am. J. Primatol. 72:1026–1037, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Information of the patterns of genetic variation in plant resistance and tolerance against herbivores and genetic trade‐offs between these two defence strategies is central for our understanding of the evolution of plant defence. We found genetic variation in resistance to two specialist herbivores and in tolerance to artificial damage but not to a specialist leaf herbivore in a long‐lived perennial herb. Seedlings tended to have genetic variation in tolerance to artificial damage. Genetic variation in tolerance of adult plants to artificial damage was not consistent in time. Our results suggest that the level of genetic variation in tolerance and resistance depends on plant life‐history stage, type of damage and timing of estimating the tolerance relative to the occurrence of the damage, which might reflect the pattern of selection imposed by herbivory. Furthermore, we found no trade‐offs between resistance and tolerance, which suggests that the two defence strategies can evolve independently.  相似文献   

20.
Post‐conflict affiliative interactions with a bystander, an uninvolved third party, have been reported in several species. The functions of these interactions could vary depending on whether the individual was an aggressor or a victim in a conflict. We examined the occurrence of and three potential functions for bystander affiliation—substitute for reconciliation, self‐protection and consolation (stress reduction)—in a free‐ranging group of Japanese macaques. We predicted that in this despotic species, the function of bystander affiliations for victims was self‐protection, whereas this was not so for aggressors. We found that compared to control situations, both aggressors and victims engaged in bystander affiliation soon after a conflict, confirming the occurrence of bystander affiliation. Victims were less likely to receive further aggression when bystander affiliation occurred than when no such interaction occurred, consistent with the explanation that post‐conflict bystander affiliation functions as self‐protection for victims. Aggressors were less likely to perform self‐scratching, an indicator of post‐conflict stress, when bystander affiliation occurred. This suggests that such affiliations benefited aggressors by reducing stress. Self‐scratching was not less frequent after affiliation with a bystander who was familiar with the former opponent, indicating that substitute reconciliation did not apply for either aggressors or victims. When bystander affiliation occurred, the bystander was a more familiar individual for aggressors and victims than the former opponent was. In conclusion, aggressors benefited in stress reduction, whereas victims benefited in self‐protection through affiliation with bystanders with whom they have a good relationship. Our study indicated that monkeys cope with post‐conflict problems according to their roles or situations not only by reconciliation but also by bystander affiliation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号