首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In a fringing reef at Aqaba at the northern end of the Gulf of Aqaba (29°26′N) growth rates, density, and the calcification rate ofPorites were investigated in order to establish calculations of gross carbonate production for the reefs in this area. Colony accretion ofPorites decreases with depth as a function of decreasing growth rates. The calcification rate ofPorites is highest in shallow water (0–5 m depth) with 0.9 g·cm−2·yr−1 and falls down to 0.5 g·cm−2·yr−1 below 30 m. Scleractinian coral gross production is calculated from potential productivity and coral coverage. It is mainly dependent on living coral cover and to a lesser extent on potential productivity. Total carbonate production on the reef ranged from 0 to 2.7 kg/m2 per year, with a reef-wide average of 1.6 kg/m2 perycar. Maximum gross carbonate production by corals at Aqaba occurs at the reef crest and in the middle fore-reef from 10 to 15 m water depth. Production is low in sandy reef parts. Below 30 m depth values still reach ca. 50% of shallow water values. Mean potential production of colonies and gross carbonate production of the whole reef community at Aqaba is lower than in tropical reefs. However, carbonate production is higher than in reef areas at the same latitude in the Pacific, indicating a northward shift of reef production in the Red Sea.  相似文献   

2.
The rate of emergence of micropredatory gnathiid isopods from the benthos, the proportion of emerging gnathiids potentially eaten by Labroides dimidiatus, and the volume of blood that gnathiids potentially remove from fishes (using gnathiid gut volume) were determined. The abundance (mean ±s.e .) of emerging gnathiids was 41·7 ± 6·9 m?2 day?1 and 4552 ± 2632 reef?1 day?1 (reefs 91–125 m2). The abundance of emerging gnathiids per fish on the reef was 4·9 ± 0·8 day?1; but excluding the rarely infested pomacentrid fishes, it was 20·9 ± 3·8 day?1. The abundance of emerging gnathiids per patch reef was 66 ± 17% of the number of gnathiids that all adult L. dimidiatus per reef eat daily while engaged in cleaning behaviour. If all infesting gnathiids subsequently fed on fish blood, their total gut volume per reef area would be 17·4 ± 5·6 mm3 m?2 day?1; and per fish on the reefs, it would be 2·3 ± 0·5 mm?3 fish?1 day?1 and 10·3 ± 3·1 mm3 fish?1 day?1 (excluding pomacentrids). The total gut volume of gnathiids infesting caged (137 mm standard length, LS) and removed from wild (100–150 mm LS) Hemigymnus melapterus by L. dimidiatus was 26·4 ± 24·6 mm3 day?1 and 53·0 ± 9·6 mm3 day?1, respectively. Using H. melapterus (137 mm LS, 83 g) as a model, gnathiids had the potential to remove, 0·07, 0·32, 0·82 and 1·63% of the total blood volume per day of each fish, excluding pomacentrids, caged H. melapterus and wild H. melapterus, respectively. In contrast, emerging gnathiids had the potential of removing 155% of the total blood volume of Acanthochromis polyacanthus (10·7 mm LS, 0·038 g) juveniles. That L. dimidiatus eat more gnathiids per reef daily than were sampled with emergence traps suggests that cleaner fishes are an important source of mortality for gnathiids. Although the proportion of the total blood volume of fishes potentially removed by blood‐feeding gnathiids on a daily basis appeared to be low for fishes weighing 83 g, the cumulative effects of repeated infections on the health of such fish remains unknown; attacks on small juvenile fishes, may result in possibly lethal levels of blood loss.  相似文献   

3.
Ecosystems at the land–sea interface are vulnerable to rising sea level. Intertidal habitats must maintain their surface elevations with respect to sea level to persist via vertical growth or landward retreat, but projected rates of sea‐level rise may exceed the accretion rates of many biogenic habitats. While considerable attention is focused on climate change over centennial timescales, relative sea level also fluctuates dramatically (10–30 cm) over month‐to‐year timescales due to interacting oceanic and atmospheric processes. To assess the response of oyster‐reef (Crassostrea virginica) growth to interannual variations in mean sea level (MSL) and improve long‐term forecasts of reef response to rising seas, we monitored the morphology of constructed and natural intertidal reefs over 5 years using terrestrial lidar. Timing of reef scans created distinct periods of high and low relative water level for decade‐old reefs (n = 3) constructed in 1997 and 2000, young reefs (n = 11) constructed in 2011 and one natural reef (approximately 100 years old). Changes in surface elevation were related to MSL trends. Decade‐old reefs achieved 2 cm/year growth, which occurred along higher elevations when MSL increased. Young reefs experienced peak growth (6.7 cm/year) at a lower elevation that coincided with a drop in MSL. The natural reef exhibited considerable loss during the low MSL of the first time step but grew substantially during higher MSL through the second time step, with growth peaking (4.3 cm/year) at MSL, reoccupying the elevations previously lost. Oyster reefs appear to be in dynamic equilibrium with short‐term (month‐to‐year) fluctuations in sea level, evidencing notable resilience to future changes to sea level that surpasses other coastal biogenic habitat types. These growth patterns support the presence of a previously defined optimal growth zone that shifts correspondingly with changes in MSL, which can help guide oyster‐reef conservation and restoration.  相似文献   

4.
Using microcosm experiments, we investigated the interactive effects of temperature and light on specific growth rates of three species each of the phytoplanktonic genera Cryptomonas and Dinobryon. Several species of these genera play important roles in the food web of lakes and seem to be sensitive to high water temperature. We measured growth rates at three to four photon flux densities ranging from 10 to 240 μmol photon · m?2 · s?1 and at 4–5 temperatures ranging from 10°C to 28°C. The temperature × light interaction was generally strong, species specific, and also genus specific. Five of the six species studied tolerated 25°C when light availability was high; however, low light reduced tolerance of high temperatures. Growth rates of all six species were unaffected by temperature in the 10°C–15°C range at light levels ≤50 μmol photon · m?2 · s?1. At high light, growth rates of Cryptomonas spp. increased with temperature until the temperature optimum was reached and then declined. The Dinobryon species were less sensitive than Cryptomonas spp. to photon flux densities of 40 μmol photon · m?2 · s?1 and 200 μmol photon · m?2 · s?1 over the entire temperature range but did not grow under a combination of very low light (10 μmol photon · m?2 · s?1) and high temperature (≥20°C). Among the three Cryptomonas species, cell volume declined with temperature and the maximum temperature tolerated was negatively related to cell size. Since Cryptomonas is important food for microzooplankton, these trends may affect the pelagic carbon flow if lake warming continues.  相似文献   

5.
Uptake rates of dissolved inorganic phosphorus and dissolved inorganic nitrogen under unsaturated and saturated conditions were studied in young sporophytes of the seaweeds Saccharina latissima and Laminaria digitata (Phaeophyceae) using a “pulse‐and‐chase” assay under fully controlled laboratory conditions. In a subsequent second “pulse‐and‐chase” assay, internal storage capacity (ISC) was calculated based on VM and the parameter for photosynthetic efficiency Fv/Fm. Sporophytes of S. latissima showed a VS of 0.80 ± 0.03 μmol · cm?2 · d?1 and a VM of 0.30 ± 0.09 μmol · cm?2 · d?1 for dissolved inorganic phosphate (DIP), whereas VS for DIN was 11.26 ± 0.56 μmol · cm?2 · d?1 and VM was 3.94 ± 0.67 μmol · cm?2 · d?1. In L. digitata, uptake kinetics for DIP and DIN were substantially lower: VS for DIP did not exceed 0.38 ± 0.03 μmol · cm?2 · d?1 while VM for DIP was 0.22 ± 0.01 μmol · cm?2 · d?1. VS for DIN was 3.92 ± 0.08 μmol · cm?2 · d?1 and the VM for DIN was 1.81 ± 0.38 μmol · cm?2 · d?1. Accordingly, S. latissima exhibited a larger ISC for DIP (27 μmol · cm?2) than L. digitata (10 μmol · cm?2), and was able to maintain high growth rates for a longer period under limiting DIP conditions. Our standardized data add to the physiological understanding of S. latissima and L. digitata, thus helping to identify potential locations for their cultivation. This could further contribute to the development and modification of applications in a bio‐based economy, for example, in evaluating the potential for bioremediation in integrated multitrophic aquacultures that produce biomass simultaneously for use in the food, feed, and energy industries.  相似文献   

6.
Throughout their range, giant clams (family Tridacnidae) are increasingly threatened by anthropogenic impacts and natural disasters, but little is known about their population status. In this first assessment of the tridacnid population at Abu Sauatir in the northern Red Sea, a total of 491 m2 were surveyed and >200 clams recorded. Tridacna maxima was the only species found. The population's live:dead ratio was 3:1. Overall clam density was 0.08?±?0.008 live and 0.02?±?0.007 dead individuals per 0.25 m2. Greatest densities occurred on the reef flat in 1 m depth (live), and on the northern reef slope in deeper waters (dead). On the slope, live clam density decreased significantly, whereas dead clam density increased significantly with depth. Sizes of live and dead individuals differed significantly. Live clams ranged from 1 to 30 cm (median 5 cm). Juveniles ≤2 cm (8.2% of the population) and individuals >11 cm occurred on the reef slope but not on the reef flat. Live clam sizes did not differ significantly between reef sites. Dead clam size ranged from 2 to 15 cm (median 6.5 cm). 2.1% of the empty shells were ≤2 cm long. Dead clam sizes differed significantly between 5 and 10 m depth on the northern reef slope. The low clam abundance (live and dead) in the shallowest and most easily accessible areas of the reef flat, combined with small sizes, strongly suggest artisanal reef-top gathering for meat and shells.  相似文献   

7.
Visual censuses of coral reef fishes in Nha Trang Bay Marine Protected Area (MPA) were conducted during September–October 2005. Nha Trang Bay MPA is relatively rich in reef fishes compared to other areas in Vietnam and the Pacific Ocean outside the ‘Coral Triangle,’ consistent with its biogeographic location in the western South China Sea. A total of 266 species of 40 families of coral reef fishes formed five distinct assemblages. Spatial variations in distribution and structure of the assemblages were associated with eight significant biological and physical variables which were cover of living hard corals, encrusting corals, branching corals, Acropora, Millepora, Montipora, depth and distance from the coast of the mainland. The six factors in front are likely related to provision of shelter and nutrition, while the distance factor is likely to represent a gradient in disturbance and impacts from various mainland sources including sedimentation and pollution discharge from nearby rivers. Local species richness ranged from 35 to 70 species 500 m−2 (mean: 51 ± 2 SE) for reef flat stations and from 23 to 68 species 500 m−2 (mean: 48 ± 4 SE) for reef slope stations. Total species richness at each site averaged 76 species (±4 SE), ranging from 56 to 110 species, dominated by wrasses, damselfishes, butterflyfishes, parrotfishes, surgeonfishes, groupers and goatfishes. Density of total fishes at each station ranged from 348 to 1,444 individuals 500 m−2 (mean: 722 ± 302 SE) for the reef flat stations and from 252 to 929 individuals 500 m−2 (mean: 536 ± 215.7 SE) for the reef slope stations. Overall mean density at each site averaged 628.9 (±238.4 SE) individuals 500 m−2. The highly protected sites supported higher mean density of fishes per site (ranged: 904.5–1,213 individuals 500 m−2 for Hon Mun and 1,167.5 individuals 500 m−2 for Hon Cau) compared to other sites (<800 individuals 500 m−2). Of the families included in the census, densities were dominated throughout the MPA by damselfishes and wrasses. Many target species, particularly groupers, snappers and emperors, were rare or absent and the low abundance of big fishes was consistent with over-harvesting. Similarly a low density of butterfly fishes and angelfishes is likely related to the supply for marine aquaria in Vietnam and overseas. This study provides an important baseline against which the success of present and future MPA management initiatives may be assessed.  相似文献   

8.

Within the complex food webs that occur on coral reefs, mesopredatory fish consume small-bodied prey and transfer accumulated biomass to other trophic levels. We estimated biomass, growth and mortality rates of three common mesopredators from Ningaloo Reef in Western Australia to calculate their annual turnover rates and potential contribution to local trophic dynamics. Biomass estimates of the serranid Epinephelus rivulatus (4.46 ± 0.76 g m−2) were an order of magnitude greater than two smaller-bodied mesopredatory fishes, Pseudochromis fuscus (0.10 ± 0.03 g m−2) and Parapercis clathrata (0.23 ± 0.31 g m−2). Growth parameters generated from a von Bertalanffy growth function fitted to size-at-age data, however, indicated that mortality rates for the three mesopredators were similar and that 32–55 % of fish survived each year. Consequently, interspecific differences in annual turnover rates among E. rivulatus (1.9 g m−2 yr−1), Pa. clathrata (0.10 g m−2 yr−1) and Ps. fuscus (0.07 g m−2 yr−1) were an artefact of differences in local biomass estimates. The rapid turnover estimates for E. rivulatus suggest this species is an important conduit of energy within the isolated patch reef habitat where it is typically found, while Ps. fuscus and Pa. clathrata channel smaller amounts of energy from specific habitats in the Ningaloo lagoon. Apparent differences in habitat, diet and turnover rates of the three species examined provide an insight into the different roles these species play in coral reef food webs and suggest that life-history traits allow for variability in the local and spatial contribution of these species at Ningaloo Reef. Moreover, calculating turnover rates of a broader suite of fish species from a range of trophic groups will help better define the role of fishes in coral reef trophic dynamics.

  相似文献   

9.
To determine what happens to scleractinian corals that have been killed by black band disease (BBD), massive corals with BBD were monitored for 11 years on a shallow reef (<10 m depth) in St. John, US Virgin Islands. Small quadrats (0.039 m2) were used to compare the rates of scleractinian recruitment to the skeletons of corals killed by either BBD or physical disturbance (Hurricane Hugo 1989). Coral recruitment was also quantified on the adjacent fringing reef using larger quadrats (0.25 m2) to detect possible biases associated with using small, permanent quadrats to assess recruitment to BBD-killed corals. Of 28 tagged colonies with BBD in 1988, 43% were lost to Hurricane Hugo in 1989, 7% were lost to unknown causes between 1991 and 1992, and 14 were monitored annually for 11 years; of these, 71% were dead and still in their original growth position in 1998. Between 1988 and 1997, corals recruited to the BBD-killed surfaces at a rate of 1.1 ± 0.3 recruits · 0.039 m−2 · decade−1 (mean ± SE, n = 14), although mortality reduced the density to 0.3 ± 0.2 recruits · 0.039 m−2 by 1997. The rate of recruitment and the taxonomic composition of the coral recruits to BBD-killed corals were indistinguishable statistically from those to corals killed by Hurricane Hugo. This demonstrates that BBD creates space that is functionally the same as other dead coral surfaces in providing a substratum for coral recruitment. However, because coral recruits are dispersed widely, clumped in distribution and temporally variable in density on the fringing reef as a whole, it is unlikely that they will be found on monitored coral colonies that have been killed by BBD. While this hypothesis is consistent with the higher density of recruits on the fringing reef compared with BBD-killed corals, further studies are required to investigate alternative explanations such as the role of substratum age in favoring recruitment to surfaces other than those killed recently by BBD. Accepted: 26 August 1999  相似文献   

10.
Takayama helix is a mixotrophic dinoflagellate that can feed on diverse algal prey. We explored the effects of light intensity and water temperature, two important physical factors, on its autotrophic and mixotrophic growth rates when fed on Alexandrium minutum CCMP1888. Both the autotrophic and mixotrophic growth rates and ingestion rates of T. helix on A. minutum were significantly affected by photon flux density. Positive growth rates of T. helix at 6–58 μmol photons · m?2 · s?1 were observed in both the autotrophic (maximum rate = 0.2 · d?1) and mixotrophic modes (0.4 · d?1). Of course, it did not grow both autotrophically and mixotrophically in complete darkness. At ≥247 μmol photons · m?2 · s?1, the autotrophic growth rates were negative (i.e., photoinhibition), but mixotrophy turned these negative rates to positive. Both autotrophic and mixotrophic growth and ingestion rates were significantly affected by water temperature. Under both autotrophic and mixotrophic conditions, it grew at 15–28°C, but not at ≤10 or 30°C. Therefore, both light intensity and temperature are critical factors affecting the survival and growth of T. helix.  相似文献   

11.
The recovery of communities of predatory fishes within a no‐take marine reserve after the eradication of illegal fishing provides an opportunity to examine the role of sharks and other large‐bodied mesopredatory fishes in structuring reef fish communities. We used baited remote underwater video stations to investigate whether an increase in sharks was associated with a change in structure of the mesopredatory fish community at Ashmore Reef, Western Australia. We found an almost fourfold increase in shark abundance in reef habitat from 0.64 hr?1 ± 0.15 SE in 2004, when Ashmore Reef was being fished illegally, to 2.45 hr?1 ± 0.37 in 2016, after eight years of full‐time enforcement of the reserve. Shark recovery in reef habitat was accompanied by a two and a half‐fold decline in the abundance of small mesopredatory fishes (≤50 cm TL) (14.00 hr?1 ± 3.79 to 5.6 hr?1 ± 1.20) and a concomitant increase in large mesopredatory fishes (≥100 cm TL) from 1.82 hr?1 ± 0.48 to 4.27 hr?1 ± 0.93. In contrast, near‐reef habitats showed an increase in abundance of large mesopredatory fishes between years (2.00 hr?1 ± 0.65 to 4.56 hr?1 ± 1.11), although only smaller increases in sharks (0.67 hr?1 ± 0.25 to 1.22 hr?1 ± 0.34) and smaller mesopredatory fishes. Although the abundance of most mesopredatory groups increased with recovery from fishing, we suggest that the large decline of small mesopredatory fish in reef habitat was mostly due to higher predation pressure following the increase in sharks and large mesopredatory fishes. At the regional scale, the structure of fished communities at Ashmore Reef in 2004 resembled those of present day Scott Reefs, where fishing still continues today. In 2016, Ashmore fish communities resembled those of the Rowley Shoals, which have been protected from fishing for decades.  相似文献   

12.
The Florida Keys are periodically exposed to extreme cold-water events that can have pronounced effects on coral reef community structure. In January 2010, the Florida Keys experienced one of the coldest 12-day periods on record, during which water temperatures decreased below the lethal limit for many tropical reef taxa for several consecutive days. This study provides a quantitative assessment of the scleractinian mortality and acute changes to benthic cover at four patch reefs in the middle and upper Keys that coincided with this cold-water event. Significant decreases in benthic cover of scleractinian corals, gorgonians, sponges, and macroalgae were observed between summer 2009 and February 2010. Gorgonian cover declined from 25.6 ± 4.6% (mean ± SE) to 13.3 ± 2.7%, scleractinian cover from 17.6 ± 1.4% to 10.7 ± 0.9%, macroalgal cover from 8.2 ± 5.2% to 0.7 ± 0.3%, and sponge cover from 3.8 ± 1.4% to 2.3 ± 1.2%. Scleractinian mortality varied across sites depending upon the duration of lethal temperatures and the community composition. Montastraea annularis complex cover was reduced from 4.4 ± 2.4% to 0.6 ± 0.2%, and 93% of all colonies surveyed suffered complete or partial mortality. Complete or partial mortality was also observed in >50% of all Porites astreoides and Montastraea cavernosa colonies and resulted in a significant reduction in cover. When compared with historical accounts of cold-water-induced mortality, our results suggest that the 2010 winter mortality was one of the most severe on record. The level of coral mortality on patch reefs is of particular concern because corals in these habitats had previously demonstrated resistance against stressors (e.g., disease and warm-water bleaching) that had negatively affected corals in other habitats in the Florida Keys during recent decades.  相似文献   

13.
Lichens make up a major component of Antarctic vegetation; they are also poikilohydric and are metabolically active only when hydrated. Logistic constraints have meant that we have little idea of the length, timing or environmental conditions of activity periods of lichens. We present the results of a three-year monitoring of the activity of the lichen Umbilicaria aprina at Botany Bay (77°S latitude) in the Ross Sea region, continental Antarctica. Chlorophyll fluorescence parameters that allowed hydrated metabolic activity to be detected were recorded with a special fluorometer at 2- or 3-h intervals. Air and thallus temperatures and incident PPFD (photosynthetic photon flux density, μmol photon m−2 s−1) were also recorded at hourly intervals. Activity was extremely variable between months and years and, overall, lichen was active for 7% of the 28-month period. Spring snow cover often delayed the onset of activity. Whereas the period immediately after snow melt was often very productive, the later months, January to March, often showed low or no activity. Mean thallus temperature when active was just above zero degrees and much higher than the annual mean air temperature of −15 to −19°C. Because major snow melts occurred when incident radiation was high, the lichen was also subjected to very high PPFD when active, often more than 2,500 μmol photon m−2 s−1. The major environmental stress appeared to be high light rather than low temperatures, and the variability of early season snow fall means that prediction of activity will be very difficult.  相似文献   

14.
Larval behaviour is important to dispersal and settlement, but is seldom quantified. Behavioural capabilities of larval Lutjanus carponotatus in both offshore pelagic and reef environments at Lizard Island, Great Barrier Reef were observed in situ to determine if they were sufficient to influence dispersal. Offshore, larvae swam with higher directional precision and faster on the windward side of the island (28 cm.s−1) than on the leeward side (16 cm s−1). Most larvae swam directionally. Mean swimming directions were southerly in the windward area and northerly in the leeward area. Larvae avoided the surface and remained mostly between 3–15 m. Larvae released near reefs were 2–3 times faster swimming away from reefs (19 cm s−1) than swimming toward or over them (6–8 cm s−1). Speed swimming away was similar to that offshore. Of 41 larvae released near reefs, 73% reached the reef, 59% settled, and 13% of those reaching the reef were eaten. Larvae settled onto hard and soft coral (58%), topographic reef features (29%) and sand and rubble (13%). Settlement depth averaged 5.5 m (2–8 m). Before settling larvae spent up to 800 s over the reef (mean 231 s) and swam up to 53 m (mean 14 m). About half of the larvae interacted with reef residents including predatory attacks and aggressive approaches by residents and aggressive approaches by settling larvae. Settlement behaviour of L. carponotatus was more similar to a serranid than to pomacentrids. Settlement-stage larvae of L. carponotatus are behaviourally capable, and have a complex settlement behaviour.  相似文献   

15.
Tang  S.  Graba-Landry  A.  Hoey  A. S. 《Coral reefs (Online)》2020,39(2):467-473

Macroalgal beds have been suggested to be an important settlement habitat for a diversity of reef fishes, yet few studies have considered how the composition or structure of macroalgal beds may influence fish settlement. The aim of this study was to investigate how the physical characteristics of Sargassum beds, a common macroalga on inshore coral reefs, influence the abundance of recently-settled rabbitfishes (Siganidae) on Orpheus Island, Great Barrier Reef. The abundance of recently-settled rabbitfish (< 3 cm total length), the density and height of Sargassum thalli, and benthic composition were quantified within replicate 1-m2 quadrats across 15 mid-reef flat sites. A total of 419 recently-settled rabbitfish from three species (Siganus doliatus, S. lineatus and S. canaliculatus) were recorded across 150 quadrats (range 0–16 individuals m−2), with S. doliatus accounting for the majority (85.2%) of individuals recorded. The abundance of S. doliatus and S. lineatus was greatest at moderate Sargassum densities (ca. 20–30 holdfasts m−2) and generally increased with Sargassum height and the cover of ‘other’ macroalgae. These findings demonstrate the potential importance of the physical characteristics of macroalgal beds to the settlement of rabbitfishes on inshore reef flats.

  相似文献   

16.
The distribution and presence of hygiene indicator and pathogenic micro‐organisms in 375 samples of attieke marketed in Côte d'Ivoire, and their roles in the food poisoning were evaluated. Microbiological analyses were carried out, which included the total viable bacteria, coliforms, Escherichia coli, Staphylococcus aureus, Salmonella, Bacillus spores, fungi and Clostridium perfringens. The results revealed that the viable bacteria counts ranged from 2·2 ± 1·2 × 105 to 3·4 ± 1·4 × 106 CFU g?1, while the yeasts and the moulds counts ranged, respectively, from 2·4 ± 0·12 × 104 to 9·8 ± 0·4 × 105 CFU g?1 and 1·3 ± 0·7 × 101 to 1·7 ± 0·7 × 102 CFU g?1. Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Citrobacter freundi, Enterobacter amnigenus, Citrobacter youngae, Enterobacter aerogenes, Klebsiella pneumoniae, Serratia marcescens, Enterobacter agglomerans and Klebsiella oxytoca were the bacteria isolated, and Rhizopus spp., Mucor spp., Thamnidium spp., Fusarium spp., Moniliella spp. the fungi. Escherichia coli, Clostridium perfringens and Salmonella spp. were not found. The occurrence of some bacteria and fungi illustrate that attieke collected in Côte d'Ivoire markets may act as a reservoir of pathogenic micro‐organisms for human.

Significance and Impact of Study

This study demonstrates the great need to carry out microbiological tests frequently on attieke and even more the need to apply correct HACCP system during the production. Attieke is especially a well‐known product in West Africa; hence, it is extremely important to ensure an adequate microbiological quality to guarantee consumers health. Overall, the study highlighted the need for effective communication on microbiological food risks, proper instruction and supervision in food‐handling procedures, greater education on food safety risks.  相似文献   

17.
Tsounis  G.  Steele  M. A.  Edmunds  P. J. 《Coral reefs (Online)》2020,39(5):1299-1311

Increasing abundance of arborescent octocorals (often referred to as gorgonians) on Caribbean reefs raises the question of whether habitat structure provided by octocorals can mediate a transition between coral- and algal- dominated states by increasing fish abundance and herbivory. This study tested the hypotheses that feeding rates and densities of demersal reef fishes are affected by the habitat structure provided by dense octocoral communities. Surveys of fishes on coral reefs in St John, US Virgin Islands, found 1.7-fold higher densities, and 2.4-fold higher feeding rates within versus outside of dense octocoral canopies. This difference, however, was only seen at sites with octocoral densities > 8 colonies m−2. Furthemore, the proximity of octocoral colonies to fish had an effect on the grazing rate of key herbivores (surgeonfishes and parrotfishes), with a 53% higher feeding rate (1.90 ± 0.11 bites min−1 m−2) near octocorals (< 20 or 30 cm, depending on the site) versus farther from them (1.24 ± 0.09 bites min−1 m−2). Finally, within the canopy of dense octocoral communities (17 colonies m−2), reef fishes fed at a rate that was 2.2-fold higher within the community than at the edge of the community that faced an adjacent sand patch. Fish abundance, however, was not uniformly higher within versus at the edge of the octocoral community, as ecotone specialists such as gobiids, blennioids, ostraciids, holocentrids, labrids, and pomacentrids were 1.3—2.3 times more abundant at the edge. In contrast, other taxa of demersal fishes, notably herbivores, were twice as abundant within octocoral communities than at the edges. Together, these results reveal an association between habitat structure created by octocorals on shallow reefs and increased feeding rates of demersal fishes (including those of herbivores). The potential of octocorals to increase herbivory that could mediate stony coral recovery is therefore worthy of further study.

  相似文献   

18.
The objective of this study was to determine the effectiveness of the spray‐drying process on the inactivation of Salmonella choleraesuis and Salmonella typhimurium spiked in liquid porcine plasma and to test the additive effect of immediate postdrying storage. Commercial spray‐dried porcine plasma was sterilized by irradiation and then reconstituted (1:9) with sterile water. Aliquots of reconstituted plasma were inoculated with either S. choleraesuis or S. typhimurium, subjected to spray‐drying at an inlet temperature of 200°C and an outlet temperature of either 71 or 80°C, and each spray‐drying temperature combinations were subjected to either 0, 30 or 60 s of residence time (RT) as a simulation of residence time typical of commercial dryers. Spray‐dried samples were stored at either 4·0 ± 3·0°C or 23·0 ± 0·3°C for 15 days. Bacterial counts of each Salmonella spp., were completed for all samples. For both Salmonella spp., spray‐drying at both outlet temperatures reduced bacterial counts about 3 logs at RT 0 s, while there was about a 5·5 log reduction at RT 60 s. Storage of all dried samples at either 4·0 ± 3·0°C or 23·0 ± 0·3°C for 15 days eliminate all detectable bacterial counts of both Salmonella spp.

Significance and Impact of the Study

Safety of raw materials from animal origin like spray‐dried porcine plasma (SDPP) may be a concern for the swine industry. Spray‐drying process and postdrying storage are good inactivation steps to reduce the bacterial load of Salmonella choleraesuis and Salmonella typhimurium. For both Salmonella spp., spray‐drying at 71°C or 80°C outlet temperatures reduced bacterial counts about 3 log at residence time (RT) 0 s, while there was about a 5.5 log reduction at RT 60 s. Storage of all dried samples at either 4.0 ± 3.0°C or 23.0 ± 0.3°C for 15 days was effective for eliminating detectable bacterial counts of both Salmonella spp.  相似文献   

19.
Community metabolism and air-sea carbon dioxide (CO2) fluxes were investigated in July 1992 on a fringing reef at Moorea (French Polynesia). The benthic community was dominated by macroalgae (85% substratum cover) and comprised of Phaeophyceae Padina tenuis (Bory), Turbinaria ornata (Turner) J. Agardh, and Hydroclathrus clathratus Bory (Howe); Chlorophyta Halimeda incrassata f. ovata J. Agardh (Howe); and Ventricaria ventricosa J. Agardh (Olsen et West), as well as several Rhodophyta (Actinotrichia fragilis Forskál (Børgesen) and several species of encrusting coralline algae). Algal biomass was 171 g dry weight· m?2. Community gross production (Pg), respiration (R), and net calcification (G) were measured in an open-top enclosure. Pg and R were respectively 248 and 240 mmol Co2·m?2·d?1, and there was a slight net dissolution of CaCO3 (0.8 mmol · m?2·d?1). This site was a sink for atmospheric CO2 (10 ± 4 mmol CO2·m?2·d?1), and the analysis of data from the literature suggests that this is a general feature of algal-dominated reefs. Measurement of air-sea CO2 fluxes in open water close to the enclosure demonstrated that changes in small-scale hydrodynamics can lead to misleading conclusions. Net CO2 evasion to the atmosphere was measured on the fringing reef due to changes in the current pattern that drove water from the barrier reef (a C02 source) to the study site.  相似文献   

20.
The present study investigated the effect of different culture conditions on the vegetative growth of a new species, Haematococcus alpinus (strain LCR‐CC‐261f) using airlift photobioreactors. The influence of culture medium, aeration rates, CO2 concentration in air‐gas mixture, temperature, light intensities, and wavelengths were investigated to achieve sustainable high cell density cultures. Growth parameters were determined by fitting the data to a form of the logistic equation that included a lag phase. The shear‐sensitive vegetative cells favored lower aeration rates in the photobioreactors. MLA medium increased to 40 mM nitrate produced high density cultures. Temperatures between 12°C and 18°C, 3% (v/v) CO2 concentration and a narrow photon flux density ranging between 37 and 48 μmol photons · m?2 · s?1 were best suited for growth. The wavelength of the light source also impacted growth and a high cell density of 9.6 × 105 cells · mL?1 was achieved using a mixture of red and blue compared to warm white, red, or blue LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号