首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rorqual whales (Balaenopteridae) obtain their food by lunge feeding, a dynamic process that involves the intermittent engulfment and filtering of large amounts of water and prey. During a lunge, whales accelerate to high speed and open their mouth wide, thereby exposing a highly distensible buccal cavity to the flow and facilitating its inflation. Unsteady hydrodynamic models suggest that the muscles associated with the ventral groove blubber undergo eccentric contraction in order to stiffen and control the inflation of the buccal cavity; in doing so the engulfed water mass is accelerated forward as the whale’s body slows down. Although the basic mechanics of lunge feeding are relatively well known, the scaling of this process remains poorly understood, particularly with regards to its duration (from mouth opening to closure). Here we formulate a new theory of engulfment time which integrates prey escape behavior with the mechanics of the whale’s body, including lunge speed and acceleration, gape angle dynamics, and the controlled inflation of the buccal cavity. Given that the complex interaction between these factors must be highly coordinated in order to maximize engulfment volume, the proposed formulation rests on the scenario of Synchronized Engulfment, whereby the filling of the cavity (posterior to the temporomandibular joint) coincides with the moment of maximum gape. When formulated specifically for large rorquals feeding on krill, our analysis predicts that engulfment time increases with body size, but in amounts dictated by the specifics of krill escape and avoidance kinematics. The predictions generated by the model are corroborated by limited empirical data on a species-specific basis, particularly for humpback and blue whales chasing krill. A sensitivity analysis applied to all possible sized fin whales also suggests that engulfment duration and lunge speed will increase intra-specifically with body size under a wide range of predator-prey scenarios. This study provides the theoretical framework required to estimate the scaling of the mass-specific drag being generated during engulfment, as well as the energy expenditures incurred.  相似文献   

2.
Mandibular mobility accompanying gape change in Northern and Antarctic minke whales was investigated by manipulating jaws of carcasses, recording jaw movements via digital instruments (inclinometers, accelerometers, and goniometers), and examining osteological and soft tissue movements via computed tomography (CT)-scans. We investigated longitudinal (α) rotation of the mandible and mediolateral displacement at the symphysis (Ω1) and temporomandibular joint (Ω2) as the mouth opened (Δ). Results indicated three phases of jaw opening. In the first phase, as gape increased from zero to 8°, there was slight (<1°) α and Ω rotation. As gape increased between 20 and 30°, the mandibles rotated slightly laterally (Mean 3°), the posterior condyles were slightly medially displaced (Mean 4°), and the anterior ends at the symphysis were laterally displaced (Mean 3°). In the third phase of jaw opening, from 30° to full (≥90°) gape, these motions reversed: mandibles rotated medially (Mean 29°), condyles were laterally displaced (Mean 14°), and symphyseal ends were medially displaced (Mean 1°). Movements were observed during jaw manipulation and analyzed with CT-images that confirmed quantitative inclinometer/accelerometer data, including the unstable intermediate (Phase 2) position. Together these shifting movements maintain a constant distance for adductor muscles stretched between the skull's temporal fossa and mandible's coronoid process. Mandibular rotation enlarges the buccal cavity's volume as much as 36%, likely to improve prey capture in rorqual lunge feeding; it may strengthen and stabilize jaw opening or closure, perhaps via a simple locking or unlocking mechanism. Rotated lips may brace baleen racks during filtration. Mandibular movements may serve a proprioceptive mechanosensory function, perhaps via the symphyseal organ, to guide prey engulfment and water expulsion for filtration.  相似文献   

3.
The feeding biology of the planktivorous megamouth shark Megachasma pelagios was investigated. Morphological examination disclosed that the megamouth has a suite of unique characteristics among sharks, such as large mouth, large bucco-pharyngeal cavity, elongate jaw cartilages, long palatoquadrate levator and preorbital muscles, long ethmopalatine ligament and elastic skin around the pharynx. The combination of these characters suggests that the megamouth shark performs engulfment feeding that is typically seen in the rorqual and humpback whales. Engulfment is a new feeding method for sharks, and the detailed mechanism of the engulfment feeding is discussed.  相似文献   

4.
One of the methods for testing splash (the first phase of water erosion) may be an analysis of photos taken using so-called high-speed cameras. The aim of this study was to determine the reproducibility of measurements using a single drop splash of simulated precipitation. The height from which the drops fell resulted in a splash of 1.5 m. Tests were carried out using two types of soil: Eutric Cambisol (loamy silt) and Orthic Luvisol (sandy loam); three initial pressure heads were applied equal to 16 kPa, 3.1 kPa, and 0.1 kPa. Images for one, five, and 10 drops were recorded at a rate of 2000 frames per second. It was found that (i) the dispersion of soil caused by the striking of the 1st drop was significantly different from the splash impact caused by subsequent drops; (ii) with every drop, the splash phenomenon proceeded more reproducibly, that is, the number of particles of soil and/or water that splashed were increasingly close to each other; (iii) the number of particles that were detached during the splash were strongly correlated with its surface area; and (iv) the higher the water film was on the surface the smaller the width of the crown was.  相似文献   

5.
Maximum gape is important to the ecology and evolution of many vertebrates, particularly gape‐limited predators, because it can restrict the sizes and shapes of prey that can be eaten. Although many cranial elements probably contribute to gape, it is typically estimated from jaw length or jaw width, or occasionally from a combination of these two measures. We measured maximum gape directly for 18 individuals of the western diamond‐backed rattlesnake, Crotalus atrox. We measured each individual's body length, several external cranial dimensions, several cranial osteological dimensions from cleaned skeletons, and we calculated gape index values from two published gape indices (GI). Cranial bone lengths and gape circumference showed negative allometry with snout–vent length (SVL), indicating that small individuals have relatively larger heads and gapes than their larger conspecifics. We then used Akaike's Information Criterion to determine which external and osteological measurements were the best predictors of gape. Body size (SVL) was the best predictor of maximum gape overall; however, when SVL was excluded from the analysis, quadrate (QL) and mandible lengths (MdLs) were the best predictors of maximum gape using both external and osteological measurements. Quadrate length probably contributes directly to gape; however, the importance of MdL to gape is less clear and may be due largely to its allometric relationships with head length and SVL. The two published GI did not prove to be better indicators of actual gape than the jaw and QLs in this study, and the gape values they produced differed significantly from our empirically determined gapes. For these reasons, we urge caution with the use and interpretation of computed GI in future studies. The extensive variation in quadrate and mandible morphology among lineages suggest that these bones are more important to variation in gape among species and lineages than within a single species. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Two morpho‐groups (i.e. small, MGS and big, MGL) of the small freshwater fish Amblypharyngodon mola were studied for their feeding behaviour in the natural environment. Both the morpho‐groups fed on a variety of phytoplankton including Cyanophyceae, Chlorophyceae, Bacillariophyceae and Euglenophyceae. The fish had more Chlorophyceae and Bacillariophyceae in their gut than other phytoplankton. Costello's selectivity plots revealed that the MGS fed on the smaller phytoplankters (2–6 µm in size), whereas the MGL fed on both the small and large (up to 12 µm in size) phytoplankters. The differences in mouth areas between the two morpho‐groups were explained as a possible reason of size‐selective feeding and contribute to overcome gape limitation in A. mola. This is further accompanied by the uniform pore size of the gills (2 µm) in all the morpho‐groups. This study concluded that A. mola exhibits a size‐dependent feeding strategy regulated by gape limitation at the ingestion level. With ontogenetic shifts, flexibility appears to overcome such a limitation in the MGL, having a wider mouth area supported by jaw opening ability.  相似文献   

7.
Ewa W&#x;grzyn 《Ibis》2013,155(1):156-164
Among various begging stimuli, mouth coloration has received increasing attention in recent years, and previous research has demonstrated that mouths of nestling Canaries Serinus canaria get redder with the extent of food deprivation and that parents preferentially feed nestlings of redder gapes. This study assesses whether the intensity of red mouth colour in nestling Blackcaps Sylvia atricapilla is a signal in parent–offspring communication. This is one of the few species with a naturally red gape in which the function of mouth redness has been tested. Three predictions were experimentally tested: (1) reddening the gape of a single nestling within a brood increases its provisioning in relation to other siblings; (2) reddening the gapes of all nestlings within a brood increases parental feeding rate; and (3) food deprivation increases nestling mouth redness. The effect of nestling quality on mouth redness was also assessed. The intensity of gape coloration affected food distribution, but in a way opposite to that expected: an increase in mouth redness of the nestling caused reduced feeding by parents. However, reddening the gapes of all nestlings had no effect on provisioning of the whole brood, suggesting that Blackcap parents use different cues for provisioning particular nestlings and the whole brood. Intensity of mouth redness in Blackcap nestlings was not affected either by food deprivation or by nestling quality in terms of mass and rank in the nest.  相似文献   

8.
As part of their social sound repertoire, migrating humpback whales (Megaptera novaeangliae) perform a large variety of surface‐active behaviors, such as breaching and repetitive slapping of the pectoral fins and tail flukes; however, little is known about what factors influence these behaviors and what their functions might be. We investigated the potential functions of surface‐active behaviors in humpback whale groups by examining the social and environmental contexts in which they occurred. Focal observations on 94 different groups of whales were collected in conjunction with continuous acoustic monitoring, and data on the social and environmental context of each group. We propose that breaching may play a role in communication between distant groups as the probability of observing this behavior decreased significantly when the nearest whale group was within 4,000 m compared to beyond 4,000 m. Involvement in group interactions, such as the splitting of a group or a group joining with other whales, was an important factor in predicting the occurrence of pectoral, fluke, and peduncle slapping, and we suggest that they play a role in close‐range or within‐group communication. This study highlights the potentially important and diverse roles of surface‐active behaviors in the communication of migrating humpback whales.  相似文献   

9.
Intertidal zone mussels can face threats from a variety of predatory species during high and low tides, and they must balance the threat of predation against other needs such as feeding and aerobic respiration. Black oystercatchers (Haematopus bachmani) on the Pacific coast of North America can depend on the mussel Mytilus californianus for a substantial portion of their diet. Observations suggest that oystercatchers tend to focus on mussels beginning to gape their valves during rising tides, following periods of aerial emersion. We present detailed, autonomous field measurements of the dynamics of three such predation events in the rocky intertidal zone. We measured accelerations of up to 4 g imposed on mussels, with handling times of 115–290 s required to open the shell and remove the majority of tissue. In each case a single oystercatcher attacked a mussel that had gaped the shell valves slightly wider than its neighbors as the rising tide began to splash the mussel bed, but no other obvious characteristic of the mussels, such as body temperature or orientation, could be linked to the oystercatcher's individual prey choice.  相似文献   

10.
Aims: To improve our understanding of the survival and splash‐mediated transfer of zoonotic agents and faecal indicator bacteria introduced into soils used for crop cultivation via contaminated irrigation waters. Methods and Results: Zoonotic agents and an Escherichia coli marker bacterium were inoculated into borehole water, which was applied to two different soil types in early‐, mid‐ and late summer. Decline of the zoonotic agents was influenced by soil type. Marker bacteria applied to columns of two soil types in irrigation water did not concentrate at the surface of the soils. Decline of zoonotic agents at the surface was influenced by soil type and environmental conditions. Typically, declines were rapid and bacteria were not detectable after 5 weeks. Selective agar strips were used to determine that the impact of water drops 24–87 μl could splash marker bacteria from soil surfaces horizontal distances of at least 25 cm and heights of 20 cm. Conclusions: Soil splash created by rain‐sized water droplets can transfer enteric bacteria from soil to ready‐to‐eat crops. Persistence of zoonotic agents was reduced at the hottest part of the growing season when irrigation is most likely. Significance and Impact of the Study: Soil splash can cause crop contamination. We report the penetration depths and seasonally influenced declines of bacteria applied in irrigation water into two soil types.  相似文献   

11.
Predators select prey so as to maximize energy and minimize manipulation time. In order to reduce prey detection and handling time, individuals must actively select their foraging space (microhabitat) and populations exhibit morphologies that are best suited for capturing locally available prey. We explored how variation in diet correlates with habitat type, and how these factors influence key morphological structures (mouth gape, eye diameter, fin length, fin area, and pectoral fin ratio) in a common microcarnivorous cryptic reef fish species, the triplefin Helcogrammoides cunninghami. In a mensurative experiment carried out at six kelp‐dominated sites, we observed considerable differences in diet along 400 km of the Chilean coast coincident with variation in habitat availability and prey distributions. Triplefins preferred a single prey type (bivalves or barnacles) at northern sites, coincident with a low diversity of foraging habitats. In contrast, southern sites presented varied and heterogeneous habitats, where triplefin diets were more diverse and included amphipods, decapods, and cumaceans. Allometry‐corrected results indicated that some morphological structures were consistently correlated with different prey items. Specifically, large mouth gape was associated with the capture of highly mobile prey such as decapods, while small mouth gape was more associated with cumaceans and copepods. In contrast, triplefins that capture sessile prey such as hydroids tend to have larger eyes. Therefore, morphological structures co‐vary with habitat selection and prey usage in this species. Our study shows how an abundant generalist reef fish exhibits variable feeding morphologies in response to the distribution of potential habitats and prey throughout its range.  相似文献   

12.
The diets of terapontid assemblages in 22 catchments across Australia's wet–dry tropics were investigated in relation to the direct use of terrestrial‐riparian inputs, as well as the role of ontogeny and morphology in mediating consumption of allocthonous material. The diet of several species was restricted almost entirely to instream trophic resources throughout their life history. In contrast, ontogenetic diet shifts towards increasing consumption of terrestrial prey types were a prominent feature of the dietary ecology of some terapontids, with collective allocthonous dietary items making a significant contribution (up to 42%) to diet in larger size classes of several species. For those species consuming terrestrial‐riparian material in their diet, terrestrial invertebrates were the most common prey item; however, terrestrial vegetation, principally riparian fruits, and terrestrial vertebrates were also important dietary inclusions in the larger size classes of particular species. A large mouth gape was the morphological feature most strongly associated with consumption of terrestrial food resources within the Terapontidae. Results indicate that the direct consumption of terrestrially derived food sources in northern Australian aquatic systems may be more important than previously asserted, and that additional research is required to better clarify the role of terrestrial subsidies to these ecosystems.  相似文献   

13.
Bulk-filter feeding is an energetically efficient strategy for resource acquisition and assimilation, and facilitates the maintenance of extreme body size as exemplified by baleen whales (Mysticeti) and multiple lineages of bony and cartilaginous fishes. Among mysticetes, rorqual whales (Balaenopteridae) exhibit an intermittent ram filter feeding mode, lunge feeding, which requires the abandonment of body-streamlining in favor of a high-drag, mouth-open configuration aimed at engulfing a very large amount of prey-laden water. Particularly while lunge feeding on krill (the most widespread prey preference among rorquals), the effort required during engulfment involve short bouts of high-intensity muscle activity that demand high metabolic output. We used computational modeling together with morphological and kinematic data on humpback (Megaptera noveaangliae), fin (Balaenoptera physalus), blue (Balaenoptera musculus) and minke (Balaenoptera acutorostrata) whales to estimate engulfment power output in comparison with standard metrics of metabolic rate. The simulations reveal that engulfment metabolism increases across the full body size of the larger rorqual species to nearly 50 times the basal metabolic rate of terrestrial mammals of the same body mass. Moreover, they suggest that the metabolism of the largest body sizes runs with significant oxygen deficits during mouth opening, namely, 20% over maximum at the size of the largest blue whales, thus requiring significant contributions from anaerobic catabolism during a lunge and significant recovery after a lunge. Our analyses show that engulfment metabolism is also significantly lower for smaller adults, typically one-tenth to one-half . These results not only point to a physiological limit on maximum body size in this lineage, but also have major implications for the ontogeny of extant rorquals as well as the evolutionary pathways used by ancestral toothed whales to transition from hunting individual prey items to filter feeding on prey aggregations.  相似文献   

14.
Premaxillary protrusion is hypothesized to confer a number of feeding advantages to teleost fishes; however, most proposed advantages relate to enhanced stealth or suction production during prey capture. Cyprinodontiformes exhibit an unusual form of premaxillary protrusion where the descending process of the premaxilla does not rotate anteriorly to occlude the sides of the open mouth during prey capture. Instead, the premaxilla is protruded such that it gives the impression of a beak during prey capture. We quantified premaxillary kinematics during feeding in four cyprinodontiform taxa and compared them with three percomorph taxa to identify any performance consequences of this protrusion mechanism. Individual prey capture events were recorded using digital high-speed video at 250-500 frames per second (n4 individuals, 4 strikes per individual). Species differed in the timing of movement and the maximum displacement of the premaxilla during the gape cycle and in the contribution of the premaxilla to jaw closing. Cyprinodontiform taxa produced less premaxillary protrusion than the percomorph taxa, and were consistently slower in the time to maximum gape. Further, it appears cyprinodontiforms can alter the contribution of the premaxilla to mouth closure on an event-specific basis. We were able to demonstrate that, within at least one species, this variability is associated with the location of the prey (bottom vs. water column). Cyprinodontiform upper jaw movements likely reflect increased dexterity associated with a foraging ecology where prey items are "picked" from a variety of locations: the bottom, water column, or surface. We postulate that dexterity requires slow, precisely controlled jaw movements; thus, may be traded off for some aspects of suction-feeding performance, such as protrusion distance and speed.  相似文献   

15.
16.
Neuronal hyperactivity is a key feature of early stages of Alzheimer''s disease (AD). Genetic studies in AD support that microglia act as potential cellular drivers of disease risk, but the molecular determinants of microglia‐synapse engulfment associated with neuronal hyperactivity in AD are unclear. Here, using super‐resolution microscopy, 3D‐live imaging of co‐cultures, and in vivo imaging of lipids in genetic models, we found that spines become hyperactive upon Aβ oligomer stimulation and externalize phosphatidylserine (ePtdSer), a canonical “eat‐me” signal. These apoptotic‐like spines are targeted by microglia for engulfment via TREM2 leading to amelioration of Aβ oligomer‐induced synaptic hyperactivity. We also show the in vivo relevance of ePtdSer‐TREM2 signaling in microglia‐synapse engulfment in the hAPP NL‐F knock‐in mouse model of AD. Higher levels of apoptotic‐like synapses in mice as well as humans that carry TREM2 loss‐of‐function variants were also observed. Our work supports that microglia remove hyperactive ePtdSer+ synapses in Aβ‐relevant context and suggest a potential beneficial role for microglia in the earliest stages of AD.  相似文献   

17.
In 2007, Hydro‐Québec began the construction of the Rupert Diversion in conjunction with the Eastmain‐1A and Sarcelle powerhouses. The partial diversion of the Rupert River became operational in 2009. Mitigation measures to preserve lake sturgeon (Acipenser fulvescens) habitat downstream of the diversion include an instream flow, weir and spurs to maintain water levels, and fish passage channels and spawning grounds. An environmental follow‐up was done in the reduced‐flow section of the Rupert. The baseline status was established from 2007 to 2009 and follow‐up studies were conducted from 2010 through 2012, and in 2014 and 2016. Besides presenting results from Hydro‐Québec's environmental monitoring, analyses were performed to search for determinants of year‐class strength. The results of the lake sturgeon monitoring activities indicate that the abundance of juveniles ≤8‐year‐old in the reduced flow section of the river remained similar or increased. Although larval production increased in post diversion conditions, cohort strength tended to decrease as did juvenile growth. Year‐class strength was positively correlated with spring and summer flow. Also, a significant, strong negative correlation was found between estimated larval abundance and water temperature during larval drift.  相似文献   

18.
Hiran M. Dutta 《Zoomorphology》1987,106(6):369-381
Summary Astronotus ocellatus captures its prey by creating a negative pressure in the buccal cavity which is caused by its quick expansion. Once the prey has been accommodated, the buccal cavity undergoes a compression which may propel the prey towards the pharyngeal jaws for mastication. The motion picture recordings indicate retracted premaxillae at the beginning of food intake followed by a maximum attainment of mouth gape and then mastication. During the maximum opening of the mouth the premaxillae are protruded and dentaries are at maximum depression. These events are followed by activities such as buccopharyngeal cavity expansion, bulging on the ventral surface of the head, and prominent curvature on the ventral surface anterior to the urohyal, caused by the upward movement of the glossohyal. Based on the cinematographic results, it may be inferred that the maximum mouth gape is caused by the sternohyoid-hyoid-interopercular-mandible coupling, and not by the opercular apparatus-mandible coupling, as the latter acts after the full descent of the lower jaw. Impression of the expanded buccopharyngeal cavity has been made by a paraffin mold technique, which confirms the displacement of the buccopharyngeal elements during expansion of the cavity.  相似文献   

19.
生态廊道具有维持或恢复生态连通性的功能,对于连接生物栖息地、保护物种多样性具有重要意义。现有的生态廊道研究主要集中于陆地,而海洋生态系统具有水体广泛连通、缺乏直观的景观斑块等特点,导致海洋生态廊道的研究成为长期以来的科学难题。以栖息地位于厦门湾的国家一级保护动物中华白海豚(Sousa chinensis)为对象,尝试基于物种分布模型和最小成本路径分析法建立海洋生态廊道的识别方法。研究采用物种分布模型识别厦门湾内中华白海豚的适宜生境分布区和节点,并利用模型产出的生境适宜性结果生成海洋中的阻力表面,模拟计算节点与节点间在阻力表面上的最小成本路径,从而生成物种扩散网络。研究结果显示,厦门湾中华白海豚的分布主要受到航道距离、到岸线距离和叶绿素浓度三项因素的影响,主要适宜生境位于西海域至九龙江口和大嶝海域。潜在的核心生态廊道面积93.19km2,次级生态廊道面积170.41km2,九龙江口-鼓浪屿南侧-黄厝-大小嶝岛沿线可能是厦门湾中华白海豚的主要迁移路线。在此基础上,从用海空间重叠和桥梁影响两方面开展了人类活动对廊道的干扰评估。评估结果显示旅游活动和...  相似文献   

20.
The humpback whale (Megaptera novaeangliae) is reported to use its elongate pectoral flippers during swimming maneuvers. The morphology of the flipper from a 9.02-m whale was evaluated with regard to this hydrodynamic function. The flipper had a wing-like, high aspect ratio plan-form. Rounded tubercles were regularly interspersed along the flipper's leading edge. The flipper was cut into 71 2.5-cm cross-sections and photographed. Except for sections near the distal tip, flipper sections were symmetrical with no camber. Flipper sections had a blunt, rounded leading edge and a highly tapered trailing edge. Placement of the maximum thickness placement for each cross-section varied from 49% of chord at the tip to 19% at mid-span. Section thickness ratio averaged 0.23 with a range of 0.20–0.28. The humpback whale flipper had a cross-sectional design typical of manufactured aerodynamic foils for lift generation. The morphology and placement of leading edge tubercles sugges that they function as enhanced lift devices to control flow over the flipper and maintain lift at high angles of attack. The morphology of the humpback whale flipper suggests that it is adapted for high maneuverability associated with the whale's unique feeding behavior. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号