首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding how individual differences in physiological performance modify behavioral responses to environmental variability and its fitness consequences is key to predicting the vulnerability of species and populations to environmental change. For many species, summit metabolic rate (MSUM; the upper limit to heat production) and basal metabolic rate (BMR; the lower limit related to energy acquisition and processing) often constrain aspects of physiological performance and behavioral activity. We examined the relationship between metabolic phenotypes, foraging behavior, and survival in overwintering black‐capped chickadees Poecile atricapillus inhabiting contiguous and fragmented forested landscapes. We found that birds with lower summit metabolic rates were generally more sensitive to winter weather and increased their use of supplemental feeding stations as ambient temperatures decreased. In highly fragmented forests, this relationship may have incurred strong survival consequences, as birds with lower summit metabolic rates were less likely to survive the winter season. Additionally, we found that chickadee populations persisting in fragmented landscapes were characterized by slightly higher thermogenic capacity (MSUM) and lower maintenance metabolic costs (BMR). We suggest that habitat loss and fragmentation present unique selection pressures that alter the relationships between environmental variability, behavior and physiology, and result in context‐specific fitness consequences.  相似文献   

2.
The mechanisms by which adaptive phenotypes spread within an evolving population after their emergence are understood fairly well. Much less is known about the factors that influence the evolutionary accessibility of such phenotypes, a pre-requisite for their emergence in a population. Here, we investigate the influence of environmental quality on the accessibility of adaptive phenotypes of Escherichia coli''s central metabolic network. We used an established flux-balance model of metabolism as the basis for a genotype-phenotype map (GPM). We quantified the effects of seven qualitatively different environments (corresponding to both carbohydrate and gluconeogenic metabolic substrates) on the structure of this GPM. We found that the GPM has a more rugged structure in qualitatively poorer environments, suggesting that adaptive phenotypes could be intrinsically less accessible in such environments. Nevertheless, on average ∼74% of the genotype can be altered by neutral drift, in the environment where the GPM is most rugged; this could allow evolving populations to circumvent such ruggedness. Furthermore, we found that the normalized mutual information (NMI) of genotype differences relative to phenotype differences, which measures the GPM''s capacity to transmit information about phenotype differences, is positively correlated with (simulation-based) estimates of the accessibility of adaptive phenotypes in different environments. These results are consistent with the predictions of a simple analytic theory that makes explicit the relationship between the NMI and the speed of adaptation. The results suggest an intuitive information-theoretic principle for evolutionary adaptation; adaptation could be faster in environments where the GPM has a greater capacity to transmit information about phenotype differences. More generally, our results provide insight into fundamental environment-specific differences in the accessibility of adaptive phenotypes, and they suggest opportunities for research at the interface between information theory and evolutionary biology.  相似文献   

3.
The adaptive significance of mechanisms of energy and water conservation among species of desert rodents, which avoid temperature extremes by remaining within a burrow during the day, is well established. Conventional wisdom holds that arid-zone birds, diurnal organisms that endure the brunt of their environment, occupy these desert climates because of the possession of physiological design features common to all within the class Aves. We review studies that show that desert birds may have evolved specific features to deal with hot desert conditions including: a reduced basal metabolic rate (BMR) and field metabolic rate (FMR), and lower total evaporative water loss (TEWL) and water turnover (WTO).Previous work on the comparative physiology of desert birds relied primarily on information gathered on species from the deserts of the southwestern U.S., which are semi-arid habitats of recent geologic origin. We include data on species from Old World deserts, which are geologically older than those in the New World, and place physiological responses along an aridity axis that includes mesic, semi-arid, arid, and hyperarid environments.The physiological differences between desert and mesic birds that we have identified using the comparative method could arise as a result of acclimation to different environments, of genetic change mediated by selection, or both. We present data on the flexibility of BMR and TEWL in Hoopoe Larks that suggest that phenotypic adjustments in these variables can be substantial. Finally, we suggest that linkages between the physiology of individual organism and its life-history are fundamental to the understanding of life-history evolution.  相似文献   

4.
Rapid adaptation to novel environments may drive changes in genomic regions through natural selection. However, the genetic architecture underlying these adaptive changes is still poorly understood. Using population genomic approaches, we investigated the genomic architecture that underlies rapid parallel adaptation of Coilia nasus to fresh water by comparing four freshwater-resident populations with their ancestral anadromous population. Linkage disequilibrium network analysis and population genetic analyses revealed two putative large chromosome inversions on LG6 and LG22, which were enriched for outlier loci and exhibited parallel association with freshwater adaptation. Drastic frequency shifts and elevated genetic differentiation were observed for the two chromosome inversions among populations, suggesting that both inversions would undergo divergent selection between anadromous and resident ecotypes. Enrichment analysis of genes within chromosome inversions showed significant enrichment of genes involved in metabolic process, immunoregulation, growth, maturation, osmoregulation, and so forth, which probably underlay differences in morphology, physiology and behavior between the anadromous and freshwater-resident forms. The availability of beneficial standing genetic variation, large optimum shift between marine and freshwater habitats, and high efficiency of selection with large population size could lead to the observed rapid parallel adaptive genomic change. We propose that chromosomal inversions might have played an important role during the evolution of rapid parallel ecological divergence in the face of environmental heterogeneity in C. nasus. Our study provides insights into the genomic basis of rapid adaptation of complex traits in novel habitats and highlights the importance of structural genomic variants in analyses of ecological adaptation.  相似文献   

5.
Environmental stress can alter genetic variation and covariation underlying functional traits, and thus affect adaptive evolution in response to natural selection. However, the genetic basis of functional traits is rarely examined in contrasting resource environments, and consequently, there is no consensus regarding whether environmental stress constrains or facilitates adaptive evolution. We tested whether resource availability affects genetic variation for and covariation among seven physiological traits and seven morphological/performance traits by growing the annual grass Avena barbata in dry and well-watered treatments. We found that differences in the overall genetic variance–covariance ( G ) matrix between environments were driven by physiological traits rather than morphology and performance traits. More physiological traits were heritable in the dry treatment than the well-watered treatment and many of the genetic correlations among physiological traits were environment dependent. In contrast, genetic variation and covariation among the morphological and performance traits did not differ across treatments. Furthermore, genetic correlations between physiology and performance were stronger in the dry treatment, which contributed to differences in the overall G -matrix. Our results therefore suggest that physiological adaptation would be constrained by low heritable variation in resource-rich environments, but facilitated by higher heritable variation and stronger genetic correlations with performance traits in resource-poor environments.  相似文献   

6.
7.
Examining physiological traits across large spatial scales can shed light on the environmental factors driving physiological variation. For endotherms, flexibility in aerobic metabolism is especially important for coping with thermally challenging environments and recent research has shown that aerobic metabolic scope [the difference between maximum thermogenic capacity (Msum) and basal metabolic rate (BMR)] increases with latitude in mammals. One explanation for this pattern is the climatic variability hypothesis, which predicts that flexibility in aerobic metabolism should increase as a function of local temperature variability. An alternative explanation is the cold adaptation hypothesis, which predicts that cold temperature extremes may also be an important driver of variation in metabolic scope. To determine the thermal drivers of aerobic metabolic flexibility in birds, we combined data on metabolic scope from 40 bird species sampled across a range of environments with several indices of local ambient temperature. Using phylogenetically‐informed analyses, we found that minimum winter temperature was the best predictor of variation in avian metabolic scope, outperforming all other thermal variables. Additionally, Msum was a better predictor of latitudinal patterns of metabolic scope than BMR, with species inhabiting colder environments exhibiting increased Msum over their counterparts in warmer environments. Taken together, these results suggest that cold temperature extremes drive latitudinal patterns of metabolic scope via selection for enhanced thermogenic performance in cold environments, supporting the cold adaptation hypothesis. Temperature extremes may therefore be an important selective pressure driving macrophysiological trends of aerobic performance in endotherms.  相似文献   

8.
Animals have adapted behavioral and physiological strategies to conserve energy during periods of adverse conditions. Heterothermy is one such adaptation used by endotherms. While heterothermy—fluctuations in body temperature and metabolic rate—has been shown in large vertebrates, little is known of the costs and benefits of this strategy, both in terms of energy and in terms of fitness. Hence, our objective was to model the energetics of seasonal heterothermy in the largest Arctic ungulate, the muskox (Ovibos moschatus), using an individual‐based energy budget model of metabolic physiology. We found that the empirically based drop in body temperature (winter max ~−0.8°C) overwinter in adult females resulted in substantial fitness benefits in terms of reduced daily energy expenditure and body mass loss. Body mass and energy reserves were 8.98% and 14.46% greater in modeled heterotherms compared to normotherms by end of winter. Based on environmental simulations, we show that seasonal heterothermy can, to some extent, buffer the negative consequences of poor prewinter body condition or reduced winter food accessibility, leading to greater winter survival (+20%–30%) and spring energy reserves (+10%–30%), and thus increased probability of future reproductive success. These results indicate substantial adaptive short‐term benefits of seasonal heterothermy at the individual level, with potential implications for long‐term population dynamics in highly seasonal environments.  相似文献   

9.
Historically, the response of marine invertebrates to their environment, and environmentally induced stress, has included some measurement of their physiology or metabolism. Eventually, this approach developed into comparative energetics and the construction of energetic budgets. More recently, coral reefs, and scleractinian corals in particular, have suffered significant declines due to climate change-related environmental stress. In addition to a number of physiological, biophysical and molecular measurements to assess “coral health,” there has been increased use of energetic approaches that have included the measurement of specific biochemical constituents (i.e., lipid concentrations) as a proxy for energy available to assess the potential outcomes of environmental stress on corals. In reading these studies, there appears to be some confusion between energy budgets and carbon budgets. Additionally, many assumptions regarding proximate biochemical composition, metabolic fuel preferences and metabolic quotients have been made, all of which are essential to construct accurate energy budgets and to convert elemental composition (i.e., carbon) to energy equivalents. Additionally, models of energetics such as the metabolic theory of ecology or dynamic energy budgets are being applied to coral physiology and include several assumptions that are not appropriate for scleractinian corals. As we assess the independent and interactive effects of multiple stressors on corals, efforts to construct quantitative energetic budgets should be a priority component of realistic multifactor experiments that would then improve the use of models as predictors of outcomes related to the effects of environmental change on corals.  相似文献   

10.
The ability of organisms to perform at different temperatures could be described by a continuous nonlinear reaction norm (i.e., thermal performance curve, TPC), in which the phenotypic trait value varies as a function of temperature. Almost any shift in the parameters of this performance curve could highlight the direct effect of temperature on organism fitness, providing a powerful framework for testing thermal adaptation hypotheses. Inter-and intraspecific differences in this performance curve are also reflected in thermal tolerances limits (e.g., critical and lethal limits), influencing the biogeographic patterns of species’ distribution. Within this context, here we investigated the intraspecific variation in thermal sensitivities and thermal tolerances in three populations of the invasive snail Cornu aspersum across a geographical gradient, characterized by different climatic conditions. Thus, we examined population differentiation in the TPCs, thermal-coma recovery times, expression of heat-shock proteins and standard metabolic rate (i.e., energetic costs of physiological differentiation). We tested two competing hypotheses regarding thermal adaptation (the “hotter is better” and the generalist-specialist trade-offs). Our results show that the differences in thermal sensitivity among populations of C. aspersum follow a latitudinal pattern, which is likely the result of a combination of thermodynamic constraints (“hotter is better”) and thermal adaptations to their local environments (generalist-specialist trade-offs). This finding is also consistent with some thermal tolerance indices such as the Heat-Shock Protein Response and the recovery time from chill-coma. However, mixed responses in the evaluated traits suggest that thermal adaptation in this species is not complete, as we were not able to detect any differences in neither energetic costs of physiological differentiation among populations, nor in the heat-coma recovery.  相似文献   

11.
Animals and plants are metaorganisms and associate with microbes that affect their physiology, stress tolerance, and fitness. Here the hypothesis that alteration of the microbiome may constitute a fast-response mechanism to environmental change is examined. This is supported by recent reciprocal transplant experiments with reef corals, which have shown that their microbiome adapts to thermally variable habitats and changes over time when transplanted into different environments. Further, inoculation of corals with beneficial bacteria increases their stress tolerance. But corals differ in their ability to flexibly associate with different bacteria. How scales of microbiome flexibility may reflect different metaorganism adaptation mechanisms is discussed and future directions for research are pinpointed. It is posited that microbiome flexibility is a broad phenomenon that contributes to the ability of organisms to respond to environmental change. Importantly, adapting with microbial help may provide an alternate route to organismal adaptation that facilitates rapid responses.  相似文献   

12.
Interaction between mitochondrial and nuclear genomes is expected to affect energetic phenotypes of traits linked to mitochondrial physiology, further influencing the fitness. A rodent, the bank vole (Myodes glareolus), has a population structure completely or partially introgressed with mitochondria from its relative, the red vole (M. r utilus). Females that carried either bank vole mitochondria or mitochondria from the introgressed species were repeatedly mated with males of both mtDNA types. We found that in males, but not in females, morpho-physiological phenotypes are affected by sire type, causing decreases in body mass (BM) and basal metabolic rate (BMR; including BM corrected, rBMR) in individuals sired by fathers carrying introgressed mitochondria. Higher effect sizes for the proportion of additive genetic variation (and 5.6, 1.9 and 3.6 times higher narrow sense heritability for BM, BMR and rBMR, respectively), and lower for proportion of environmental variation were detected in progeny of non-introgressed males. Our data indicate that co-adapted and possibly co-introgressed nuclear genes related to energetic physiology have an important role in adaptation to the northern conditions in bank voles, and that sex linked nuclear genes are a potential source for variation in basal metabolic rate.  相似文献   

13.
在自然界中,环境变化、季节更替和人为因素造成食物资源时空分布的不均一性,导致鱼类经常面临食物资源短缺的环境胁迫,对其能量代谢和行为造成一定影响。为考察食物资源短缺下暖水性鲤科鱼类能量代谢、个性与集群行为的应对策略及其可能的内在关联,选取中华倒刺鲃(Spinibarbus sinensis)幼鱼为实验对象,分别测定饥饿组(2周)和对照组(维持日粮)在处理前后实验鱼的标准代谢率(Standard metabolic rate,SMR)、个性行为(勇敢性、探索性和活跃性)以及实验处理后的集群行为(凝聚力和协调性)。研究发现:(1)饥饿组和对照组实验过程中实验鱼SMR均显著下降,但仅饥饿组实验鱼SMR具有重复性;(2)饥饿导致中华倒刺鲃幼鱼勇敢性、探索性、活跃性均显著增加;(3)饥饿导致群体成员间距离缩短,游泳速度及其同步性上升。研究表明:饥饿后的中华倒刺鲃不仅适应性降低SMR以减少能量消耗,而且呈现出更高的勇敢性、探索性和活跃性以利于获取食物资源;饥饿迫使中华倒刺鲃群体提高凝聚力和协调性,可能有助于提高群体的生存能力。  相似文献   

14.
Understanding how quickly physiological traits evolve is a topic of great interest, particularly in the context of how organisms can adapt in response to climate warming. Adjustment to novel thermal habitats may occur either through behavioural adjustments, physiological adaptation or both. Here, we test whether rates of evolution differ among physiological traits in the cybotoids, a clade of tropical Anolis lizards distributed in markedly different thermal environments on the Caribbean island of Hispaniola. We find that cold tolerance evolves considerably faster than heat tolerance, a difference that results because behavioural thermoregulation more effectively shields these organisms from selection on upper than lower temperature tolerances. Specifically, because lizards in very different environments behaviourally thermoregulate during the day to similar body temperatures, divergent selection on body temperature and heat tolerance is precluded, whereas night-time temperatures can only be partially buffered by behaviour, thereby exposing organisms to selection on cold tolerance. We discuss how exposure to selection on physiology influences divergence among tropical organisms and its implications for adaptive evolutionary response to climate warming.  相似文献   

15.
Aerobic mitochondria serve as the power sources of eukaryotes by producing ATP through oxidative phosphorylation (OXPHOS). The enzymes involved in OXPHOS are multisubunit complexes encoded by both nuclear and mitochondrial DNA. Thus, regulation of respiration is necessarily a highly coordinated process that must organize production, assembly and function of mitochondria to meet an organism's energetic needs. Here I review the role of OXPHOS in metabolic adaptation and diversification of higher animals. On a physiological timescale, endocrine-initiated signaling pathways allow organisms to modulate respiratory enzyme concentration and function under changing environmental conditions. On an evolutionary timescale, mitochondrial enzymes are targets of natural selection, balancing cytonuclear coevolutionary constraints against physiological innovation. By synthesizing our knowledge of biochemistry, physiology and evolution of respiratory regulation, I propose that we can now explore questions at the interface of these fields, from molecular translation of environmental cues to selection on mitochondrial haplotype variation.  相似文献   

16.
Intrauterine nutrition can program metabolism, creating stable changes in physiology that may have significant health consequences. The mechanism underlying these changes is widely assumed to involve epigenetic changes to the expression of metabolic genes, but evidence supporting this idea is limited. Here we have performed the first study of the epigenomic consequences of exposure to maternal obesity and diabetes. We used a mouse model of natural-onset obesity that allows comparison of genetically identical mice whose mothers were either obese and diabetic or lean with a normal metabolism. We find that the offspring of obese mothers have a latent metabolic phenotype that is unmasked by exposure to a Western-style diet, resulting in glucose intolerance, insulin resistance and hepatic steatosis. The offspring show changes in hepatic gene expression and widespread but subtle alterations in cytosine methylation. Contrary to expectation, these molecular changes do not point to metabolic pathways but instead reside in broadly developmental ontologies. We propose that, rather than being adaptive, these changes may simply produce an inappropriate response to suboptimal environments; maladaptive phenotypes may be avoidable if postnatal nutrition is carefully controlled.  相似文献   

17.
Many lines of evidence implicate mitochondria in phenotypic variation: (a) rare mutations in mitochondrial proteins cause metabolic, neurological, and muscular disorders; (b) alterations in oxidative phosphorylation are characteristic of type 2 diabetes, Parkinson disease, Huntington disease, and other diseases; and (c) common missense variants in the mitochondrial genome (mtDNA) have been implicated as having been subject to natural selection for adaptation to cold climates and contributing to "energy deficiency" diseases today. To test the hypothesis that common mtDNA variation influences human physiology and disease, we identified all 144 variants with frequency >1% in Europeans from >900 publicly available European mtDNA sequences and selected 64 tagging single-nucleotide polymorphisms that efficiently capture all common variation (except the hypervariable D-loop). Next, we evaluated the complete set of common mtDNA variants for association with type 2 diabetes in a sample of 3,304 diabetics and 3,304 matched nondiabetic individuals. Association of mtDNA variants with other metabolic traits (body mass index, measures of insulin secretion and action, blood pressure, and cholesterol) was also tested in subsets of this sample. We did not find a significant association of common mtDNA variants with these metabolic phenotypes. Moreover, we failed to identify any physiological effect of alleles that were previously proposed to have been adaptive for energy metabolism in human evolution. More generally, this comprehensive association-testing framework can readily be applied to other diseases for which mitochondrial dysfunction has been implicated.  相似文献   

18.
Central-place foraging seabirds alter the availability of their prey around colonies, forming a "halo" of reduced prey access that ultimately constrains population size. This has been indicated indirectly by an inverse correlation between colony size and reproductive success, numbers of conspecifics at other colonies within foraging range, foraging effort (i.e. trip duration), diet quality and colony growth rate. Although ultimately mediated by density dependence relative to food through intraspecific exploitative or interference competition, the proximate mechanism involved has yet to be elucidated. Herein, we show that Adélie penguin Pygoscelis adeliae colony size positively correlates to foraging trip duration and metabolic rate, that the metabolic rate while foraging may be approaching an energetic ceiling for birds at the largest colonies, and that total energy expended increases with trip duration although uncompensated by increased mass gain. We propose that a competition-induced reduction in prey availability results in higher energy expenditure for birds foraging in the halo around large colonies, and that to escape the halo a bird must increase its foraging distance. Ultimately, the total energetic cost of a trip determines the maximum successful trip distance, as on longer trips food acquired is used more for self maintenance than for chick provisioning. When the net cost of foraging trips becomes too high, with chicks receiving insufficient food, chick survival suffers and subsequent colony growth is limited. Though the existence of energetic studies of the same species at multiple colonies is rare, because foraging metabolic rate increases with colony size in at least two other seabird species, we suggest that an energetic constraint to colony size may generally apply to other seabirds.  相似文献   

19.
In North America, populations of lake whitefish (Coregonus clupeaformis) have evolved sympatric 'dwarf' and 'normal' ecotypes that are associated with distinct trophic niches within lakes. Trophic specialization should place diverging physiological demands on individuals, and thus, genes and phenotypes associated with energy production represent ideal candidates for studies of adaptation. Here, we test for the parallel divergence of traits involved in oxygen transport in dwarf and normal lake whitefish from Québec, Canada and Maine, USA. We observed significant differences in red blood cell morphology between the ecotypes. Specifically, dwarfs exhibited larger nuclei and a higher nucleus area/total cell area than normal whitefish in all of the lakes examined. In addition, isoelectric focusing gels revealed variation in the haemoglobin protein components found in whitefish. Dwarf and normal whitefish exhibited a similar number of protein components, but the composition of these components differed, with dwarf whitefish bearing a greater proportion of cathodic components compared to the normals. Furthermore, dwarf whitefish showed significant haemoglobin gene upregulation in the brain compared with the levels shown in normals. Together, our results indicate that metabolic traits involved in oxygen transport differ between the whitefish ecotypes and the strong parallel patterns of divergence observed across lakes implicates ecologically driven selection pressures. We discuss the function of these traits in relation to the differing trophic niches occupied by the whitefish and the potential contributions of trait plasticity and genetic divergence to energetic adaptation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号