首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
SoxR from Escherichia coli and related enterobacteria is activated by a broad range of redox‐active compounds through oxidation or nitrosylation of its [2Fe–2S] cluster. Activated SoxR then induces SoxS, which subsequently activates more than 100 genes in response. In contrast, non‐enteric SoxRs directly activate their target genes in response to redox‐active compounds that include endogenously produced metabolites. We compared the responsiveness of SoxRs from Streptomyces coelicolor (ScSoxR), Pseudomonas aeruginosa (PaSoxR) and E. coli (EcSoxR), all expressed in S. coelicolor, towards natural or synthetic redox‐active compounds. EcSoxR responded to all compounds examined, whereas ScSoxR was insensitive to oxidants such as paraquat (Eh ?440 mV) and menadione sodium bisulphite (Eh ?45 mV) and to NO generators. PaSoxR was insensitive only to some NO generators. Whole‐cell EPR analysis of SoxRs expressed in E. coli revealed that the [2Fe–2S]1+ of ScSoxR was not oxidizable by paraquat, differing from EcSoxR and PaSoxR. The mid‐point redox potential of purified ScSoxR was determined to be ?185 ± 10 mV, higher by ~ 100 mV than those of EcSoxR and PaSoxR, supporting its limited response to paraquat. The overall sensitivity profile indicates that both redox potential and kinetic reactivity determine the differential responses of SoxRs towards various oxidants.  相似文献   

4.
5.
While many studies have explored the growth of Pseudomonas aeruginosa, comparatively few have focused on its survival. Previously, we reported that endogenous phenazines support the anaerobic survival of P. aeruginosa, yet the physiological mechanism underpinning survival was unknown. Here, we demonstrate that phenazine redox cycling enables P. aeruginosa to oxidize glucose and pyruvate into acetate, which promotes survival by coupling acetate and ATP synthesis through the activity of acetate kinase. By measuring intracellular NAD(H) and ATP concentrations, we show that survival is correlated with ATP synthesis, which is tightly coupled to redox homeostasis during pyruvate fermentation but not during arginine fermentation. We also show that ATP hydrolysis is required to generate a proton‐motive force using the ATP synthase complex during fermentation. Together, our results suggest that phenazines enable maintenance of the proton‐motive force by promoting redox homeostasis and ATP synthesis. This work demonstrates the more general principle that extracellular redox‐active molecules, such as phenazines, can broaden the metabolic versatility of microorganisms by facilitating energy generation.  相似文献   

6.
7.
8.
Aim: To develop a faster and easier in vivo method to screen compounds for anti‐oxidant activity using a microbial system. Methods and Results: Bacterial redox sensor‐based assay systems were applied. The activities of SoxR and OxyR, the bacterial redox sensors, were monitored to probe the intracellular redox status through two reporter strains, Escherichia coli soxSplacZ and oxySplacZ fusions, which specifically respond to paraquat, a superoxide generator, and H2O2, respectively, with practically no cross reactivity. For the test screening, 27 natural compounds including phenolics and flavonoids that are putatively considered anti‐oxidant nutritional supplements were collected and assayed for their capability to alleviate oxidative stress in these bacterial systems. Among them, rutin, kaempferol and quercetin had significant anti‐H2O2 activity, and betaine, glycyrrhizic acid and baicalin had weak anti‐superoxide activity. While rutin, kaempferol and quercetin significantly reduced the H2O2 stress at low concentrations, betaine, glycyrrhizic acid and baicalin required higher concentration for their anti‐superoxide effects. In vitro, only quercetin protected DNA in a metal‐catalysed oxidation system, suggesting that the other compounds might indirectly exert their anti‐oxidant activities through other biological functions. Finally, quercetin, rutin and kaempferol significantly restored the viability of a superoxide dismutase mutant that has limited viability because of defective defence against oxidative stress. Conclusion: These bacterial systems could provide a more efficient method for measuring the activity of compounds affecting cellular oxidative stress and viability. Significance and Impact of the Study: The demand for anti‐oxidant and anti‐ageing activities is increasing in one of the fastest growing segments of the functional food market, but the screening for these activities is currently very laborious, expensive and time consuming. This study suggests a basis for a high throughput screening method for these activities.  相似文献   

9.
10.
SoxR is a [2Fe‐2S]‐containing sensor‐regulator, which is activated through oxidation by redox‐active compounds (RACs). SoxRs show differential sensitivity to RACs, partly due to different redox potentials, such that Escherichia coli (Ec) SoxR with lower potential respond to broader range of RACs than Streptomyces coelicolor (Sc) SoxR. In S. coelicolor, the RACs that do not activate ScSoxR did not inhibit growth, suggesting that ScSoxR is tuned to respond to growth‐inhibitory RACs. Based on sequence comparison and mutation studies, two critical amino acids around the [2Fe‐2S] binding site were proposed as key determinants of sensitivity. ScSoxR‐like mutation (R127L/P131V) in EcSoxR changed its sensitivity profile as ScSoxR, whereas EcSoxR‐like mutation (L126R/V130P) in ScSoxR caused relaxed response. In accordance, the redox potentials of EcSoxRR127L/P131V and ScSoxRL126R/V130P were estimated to be ?192 ± 8 mV and ?273 ± 10 mV, respectively, approaching that of ScSoxR (?185 mV) and EcSoxR (?290 mV). Molecular dynamics simulations revealed that the R127L and P131V substitutions in EcSoxR caused more electropositive environment around [2Fe‐2S], making it harder to get oxidized. This reveals a mechanism to modulate redox‐potential in [Fe‐S]‐containing sensors by point mutations and to evolve a sensor with differential sensitivity to achieve optimal cellular physiology.  相似文献   

11.
12.
Purple non‐sulfur bacteria (Rhodospirillaceae) have been extensively employed for studying principles of photosynthetic and respiratory electron transport phosphorylation and for investigating the regulation of gene expression in response to redox signals. Here, we use mathematical modeling to evaluate the steady‐state behavior of the electron transport chain (ETC) in these bacteria under different environmental conditions. Elementary‐modes analysis of a stoichiometric ETC model reveals nine operational modes. Most of them represent well‐known functional states, however, two modes constitute reverse electron flow under respiratory conditions, which has been barely considered so far. We further present and analyze a kinetic model of the ETC in which rate laws of electron transfer steps are based on redox potential differences. Our model reproduces well‐known phenomena of respiratory and photosynthetic operation of the ETC and also provides non‐intuitive predictions. As one key result, model simulations demonstrate a stronger reduction of ubiquinone when switching from high‐light to low‐light conditions. This result is parameter insensitive and supports the hypothesis that the redox state of ubiquinone is a suitable signal for controlling photosynthetic gene expression.  相似文献   

13.
Inactivation of Agrobacterium tumefaciens soxR increases sensitivity to superoxide generators. soxR expression is highly induced by superoxide stress and is autoregulated. SoxR also directly regulates the superoxide-inducible expression of atu5152. Taken together, the physiological role of soxR and the mechanism by which it regulates expression of target genes make the A. tumefaciens SoxR system different from other bacterial systems.  相似文献   

14.
Superoxide and other reactive oxygen species (ROS) shape microbial communities and drive the transformation of metals and inorganic/organic matter. Taxonomically diverse bacteria and phytoplankton produce extracellular superoxide during laboratory cultivation. Understanding the physiological reasons for extracellular superoxide production by aerobes in the environment is a crucial question yet not fully solved. Here, we showed that iron-starving Arthrobacter sp. QXT-31 (A. QXT-31) secreted a type of siderophore [deferoxamine (DFO)], which provoked extracellular superoxide production by A. QXT-31 during carbon sources-level fluctuation. Several other siderophores also demonstrated similar effects to A. QXT-31. RNA-Seq data hinted that DFO stripped iron from iron-bearing proteins in electron transfer chain (ETC) of metabolically active A. QXT-31, resulting in electron leakage from the electron-rich (resulting from carbon sources metabolism by A. QXT-31) ETC and superoxide production. Considering that most aerobes secrete siderophore(s) and undergo carbon sources-level fluctuation, the superoxide-generation pathway is likely a common pathway by which aerobes produce extracellular superoxide in the environment, thus influencing the microbial community and cycling of elements. Our results pointed that the ubiquitous siderophore might be the potential driving force for the microbial generation of superoxide and other ROS and revealed the important role of iron physiology in microbial ROS generation.  相似文献   

15.
16.
17.
18.
Mediated extracellular electron transfer (EET) might be a great vehicle to connect microbial bioprocesses with electrochemical control in stirred-tank bioreactors. However, mediated electron transfer to date is not only much less efficient but also much less studied than microbial direct electron transfer to an anode. For example, despite the widespread capacity of pseudomonads to produce phenazine natural products, only Pseudomonas aeruginosa has been studied for its use of phenazines in bioelectrochemical applications. To provide a deeper understanding of the ecological potential for the bioelectrochemical exploitation of phenazines, we here investigated the potential electroactivity of over 100 putative diverse native phenazine producers and the performance within bioelectrochemical systems. Five species from the genera Pseudomonas, Streptomyces, Nocardiopsis, Brevibacterium and Burkholderia were identified as new electroactive bacteria. Electron discharge to the anode and electric current production correlated with the phenazine synthesis of Pseudomonas chlororaphis subsp. aurantiaca. Phenazine-1-carboxylic acid was the dominant molecule with a concentration of 86.1 μg/ml mediating an anodic current of 15.1 μA/cm2. On the other hand, Nocardiopsis chromatogenes used a wider range of phenazines at low concentrations and likely yet-unknown redox compounds to mediate EET, achieving an anodic current of 9.5 μA/cm2. Elucidating the energetic and metabolic usage of phenazines in these and other species might contribute to improving electron discharge and respiration. In the long run, this may enhance oxygen-limited bioproduction of value-added compounds based on mediated EET mechanisms.  相似文献   

19.
Mariana Rocha  Roger Springett 《BBA》2019,1860(1):89-101
The proton pumps of the mitochondrial electron transport chain (ETC) convert redox energy into the proton motive force (ΔP), which is subsequently used by the ATP synthase to regenerate ATP. The limited available redox free energy requires the proton pumps to operate close to equilibrium in order to maintain a high ΔP, which in turn is needed to maintain a high phosphorylation potential. Current biochemical assays measure complex activities far from equilibrium and so shed little light on their function under physiological conditions. Here we combine absorption spectroscopy of the ETC hemes, NADH fluorescence spectroscopy and oxygen consumption to simultaneously measure the redox potential of the intermediate redox pools, the components of ΔP and the electron flux in RAW 264.7 mouse macrophages. We confirm that complex I and III operate near equilibrium and quantify the linear relationship between flux and disequilibrium as a metric of their function under physiological conditions. In addition, we quantify the dependence of complex IV turnover on ΔP and the redox potential of cytochrome c to determine the complex IV driving force and find that the turnover is proportional to this driving force. This form of quantification is a more relevant metric of ETC function than standard biochemical assays and can be used to study the effect of mutations in either mitochondrial or nuclear genome affecting mitochondrial function, post-translation changes, different subunit isoforms, as well as the effect of pharmaceuticals on ETC function.  相似文献   

20.
The expression of sodA, the Escherichia coli gene encoding manganese superoxide dismutase (MnSOD) is induced by aerobiosis and superoxide generators such as paraquat. Analysis of variants expressing sodA in the absence of oxygen has revealed that mutations in genes for two global regulatory systems, Fur (ferric uptake regulation) and Arc (aerobic respiration control), are simultaneously required for the expression of sodA in anaerobiosis. The Fur protein still represses sodA in an iron-dependent fashion in aerobiosis. Moreover, all mutants remain inducible by paraquat, indicating that the positive control of SoxR, which mediates the response to superoxide in E. coli, is still operative. Thus, in addition to the response to the superoxide-mediated oxidative stress which depends on SoxR, two global controls regulate MnSOD expression: ArcA couples MnSOD expression to respiration, and Fur couples it to the intracellular concentration of iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号