首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Many pathways of primary metabolism are substantially conserved within and across plant families. However, significant differences in organization and fluxes through a reaction network may occur, even between plants in closely related genera. Assessing and understanding these differences is key to appreciating metabolic diversity, and to attempts to engineer plant metabolism for higher crop yields and desired product profiles. To better understand lipid metabolism and seed oil synthesis in canola (Brassica napus), we have characterized four canola homologues of the Arabidopsis (Arabidopsis thaliana) ROD1 gene. AtROD1 encodes phosphatidylcholine:diacylglycerol cholinephosphotransferase (PDCT), the enzyme that catalyzes a major flux of polyunsaturated fatty acids (PUFAs) in oil synthesis. Assays in yeast indicated that only two of the canola genes, BnROD1.A3 and BnROD1.C3, encode active isozymes of PDCT, and these genes are strongly expressed during the period of seed oil synthesis. Loss of expression of BnROD1.A3 and BnROD1.C3 in a double mutant, or by RNA interference, reduced the PUFA content of the oil to 26.6% compared with 32.5% in the wild type. These results indicate that ROD1 isozymes in canola are responsible for less than 20% of the PUFAs that accumulate in the seed oil compared with 40% in Arabidopsis. Our results demonstrate the care needed when translating results from a model species to crop plants.  相似文献   

2.
许多工业用稀有脂肪酸存在于非食用植物种子油中,它们由不同脂肪酸Δ12-去饱和酶(FAD2)催化,在油酸Δ12位引入环氧基、羟基、形成三键或共扼双键。目前已从不同生物中克隆得到一系列FAD2酶基因,并在油料植物中获得成功表达。但总体上看,目标脂肪酸累积量还相对较低,稀有脂肪酸生物合成及其从磷脂酰胆碱(PC)到储存甘油三酯(IAG)的转化机制尚需要进一步阐明。  相似文献   

3.
    
Lipid class dynamics, the pattern of change in the primary form and location of lipid stores and their relationship with standard length (L(S) ), were investigated in collections of young-of-the-year weakfish Cynoscion regalis for the purpose of determining the utility of this analysis as an indication of condition. The separation of total lipids into individual classes and the analysis of potential storage depots revealed the general patterns of lipid class dynamics and energy storage in C. regalis during their period of juvenile estuarine residency. Phospholipid and cholesterol exhibited moderate but variable (8·1-40·0 and 1·3-21·5 mg g(-1) , respectively) concentrations across the entire juvenile period and were the predominant lipid classes in juveniles <100 mm L(S) , while wax ester concentrations were low (c. 1 mg g(-1) ) and exhibited the least amount of variability among lipid classes. Triacylglycerols (TAG) and free fatty acids (FFA) exhibited similar dynamics, with relatively low concentrations (<15 mg g(-1) ) in individuals ≤100 mm L(S) . In larger juveniles both TAG and FFA concentrations generally increased rapidly, though there was considerable variability in both measures (0·0-199·7 and 0·0-49·7 mg g(-1) , respectively). Increasing levels of lipids, primarily in the form of TAG, with size indicated an accumulation of energy reserves with growth, thus providing an indication of individual condition for larger juveniles. Separate analysis of liver, viscera and the remaining carcass indicated that liver and viscera did not represent a significant depot of TAG reserves. Analysis of samples derived from whole juvenile C. regalis thus provided an accurate estimate of energy reserves.  相似文献   

4.
5.
    
《Journal of lipid research》2017,58(11):2147-2161
  相似文献   

6.
    
《Molecular cell》2021,81(18):3708-3730
  相似文献   

7.
    
In many plant species, gene dosage is an important cause of phenotype variation. Engineering gene dosage, particularly in polyploid genomes, would provide an efficient tool for plant breeding. The hexaploid oilseed crop Camelina sativa, which has three closely related expressed subgenomes, is an ideal species for investigation of the possibility of creating a large collection of combinatorial mutants. Selective, targeted mutagenesis of the three delta‐12‐desaturase (FAD2) genes was achieved by CRISPR‐Cas9 gene editing, leading to reduced levels of polyunsaturated fatty acids and increased accumulation of oleic acid in the oil. Analysis of mutations over four generations demonstrated the presence of a large variety of heritable mutations in the three isologous CsFAD2 genes. The different combinations of single, double and triple mutants in the T3 generation were isolated, and the complete loss‐of‐function mutants revealed the importance of delta‐12‐desaturation for Camelina development. Combinatorial association of different alleles for the three FAD2 loci provided a large diversity of Camelina lines with various lipid profiles, ranging from 10% to 62% oleic acid accumulation in the oil. The different allelic combinations allowed an unbiased analysis of gene dosage and function in this hexaploid species, but also provided a unique source of genetic variability for plant breeding.  相似文献   

8.
    
《Journal of lipid research》2017,58(8):1524-1535
  相似文献   

9.
  总被引:4,自引:0,他引:4  
Seed aging decreases the quality of seed and grain and results in agricultural and economic losses. Alterations that impair cellular structures and metabolism are implicated in seed deterioration, but the molecular and biochemical bases for seed aging are not well understood. Ablation of the gene for a membrane lipid-hydrolyzing phospholipase D (PLDalpha1) in Arabidopsis enhanced seed germination and oil stability after storage or exposure of seeds to adverse conditions. The PLDalpha1-deficient seeds exhibited a smaller loss of unsaturated fatty acids and lower accumulation of lipid peroxides than did wild-type seeds. However, PLDalpha1-knockdown seeds were more tolerant of aging than were PLDalpha1-knockout seeds. The results demonstrate the PLDalpha1 plays an important role in seed deterioration and aging in Arabidopsis. A high level of PLDalpha1 is detrimental to seed quality, and attenuation of PLDalpha1 expression has the potential to improve oil stability, seed quality and seed longevity.  相似文献   

10.
    
《Cell metabolism》2020,31(1):62-76
  相似文献   

11.
  总被引:9,自引:0,他引:9  
We report a novel, highly sensitive and selective method for the extraction and quantification of acyl CoA esters from plant tissues. The method detects acyl CoA esters with acyl chain lengths from C4 to C20 down to concentrations as low as 6 fmol in extracts. Acyl CoA esters from standard solutions or plant extracts were derived to their fluorescent acyl etheno CoA esters in the presence of chloroacetaldehyde, separated by ion-paired reversed-phase high-performance liquid chromatography, and detected fluorometrically. This derivitization procedure circumvents the selectivity problems associated with previously published enzymatic methods, and methods that rely on acyl chain or thiol group modification for acyl CoA ester detection. The formation of acyl etheno CoA esters was verified by mass spectrometry, which was also used to identify unknown peaks from chromatograms of plant extracts. Using this method, we report the composition and concentration of the acyl CoA pool during lipid synthesis in maturing Brassica napus seeds and during storage lipid breakdown in 2-day-old Arabidopsis thaliana seedlings. The concentrations measured were in the 3--6 microM range for both tissue types. We also demonstrate the utility of acyl CoA profiling in a transgenic B. napus line that has high levels of lauric acid. To our knowledge, this is the first time that reliable estimates of acyl CoA ester concentrations have been made for higher plants, and the ability to profile these metabolites provides a valuable new tool for the investigation of gene function.  相似文献   

12.
    
Cycloalkanes have broad applications as specialty fuels, lubricants, and pharmaceuticals but are not currently available from renewable sources, whereas, production of microbial cycloalkanes such as cyclopropane fatty acids (CFA) has bottlenecks. Here, a systematic investigation was undertaken into the biosynthesis of CFA in Saccharomyces cerevisiae heterologously expressing bacterial CFA synthase. The enzyme catalyzes formation of a 3-membered ring in unsaturated fatty acids. Monounsaturated fatty acids in phospholipids (PL) are the site of CFA synthesis; precursor cis-Δ9 C16 and C18 fatty acids were enhanced through OLE1 and SAM2 overexpression which enhanced CFA in PL. CFA turnover from PL to storage in triacylglycerols (TAG) was achieved by phospholipase PBL2 overexpression and acyl-CoA synthase to increase flux to TAG. Consequently, CFA storage as TAG reached 12 mg g−1 DCW, improved 3-fold over the base strain and >22% of TAG was CFA. Our research improves understanding of cycloalkane biosynthesis in yeast and offers insights into processing of other exotic fatty acids.  相似文献   

13.
    
《Journal of lipid research》2013,54(6):1644-1652
  相似文献   

14.
The aim of this study was to determine the effect of feeding a fish oil (FO)-containing diet on lipid and protein metabolism, postprandial glycaemia and body weight in young, lean, adult dogs. Eight female Beagles were randomly assigned to one of two isonitrogenous and isoenergetic diets, Control or FO, in a crossover design. At the beginning of the experiment and at 30 and 60 d, a baseline blood sample was collected and the dogs then were fed their daily ration. Nitrogen balance began at 07:00 h on day 63 of each experimental period and ended at 07:00 h on day 69. On day 66 of each period, a single dose (7.5 mg/kg) of 15N-glycine was administered orally to each dog via gelatin capsule. Postprandial glycaemia did not differ between treatments or among sampling days within treatment. Cholesterol concentration was increased (p < 0.05) on the Control treatment throughout the experiment when compared to values of day 0. Dogs fed the FO treatment had higher plasma triglyceride and ghrelin concentrations than those fed the Control treatment. Body weight and food intake did not differ between dietary treatments. Faecal excretion was increased (p < 0.05) in the FO treatment. Dry matter digestibility was decreased (p < 0.05) and fat digestibility tended (p < 0.10) to decrease in the FO treatment. Overall, feeding a FO-containing diet showed a protective effect against the rise of plasma cholesterol and it increased plasma ghrelin concentration. However, FO supplementation did not appear to affect protein metabolism or postprandial glycaemia in adult lean dogs.  相似文献   

15.
    
Acyl CoA:monoacylglycerol acyltransferase 2 (MGAT2) is thought to be crucial for dietary fat absorption. Indeed, mice lacking the enzyme (Mogat2(-/-)) are resistant to obesity and other metabolic disorders induced by high-fat feeding. However, these mice absorb normal quantities of fat. To explore whether a high level of dietary fat is an essential part of the underlying mechanism(s), we examined metabolic responses of Mogat2(-/-) mice to diets containing varying levels of fat. Mogat2(-/-) mice exhibited 10-15% increases in energy expenditure compared with wild-type littermates; although high levels of dietary fat exacerbated the effect, this phenotype was expressed even on a fat-free diet. When deprived of food, Mogat2(-/-) mice expended energy and lost weight like wild-type controls. To determine whether MGAT2 deficiency protects against obesity in the absence of high-fat feeding, we crossed Mogat2(-/-) mice with genetically obese Agouti mice. MGAT2 deficiency increased energy expenditure and prevented these mice from gaining excess weight. Our results suggest that MGAT2 modulates energy expenditure through multiple mechanisms, including one independent of dietary fat; these findings also raise the prospect of inhibiting MGAT2 as a strategy for combating obesity and related metabolic disorders resulting from excessive calorie intake.  相似文献   

16.
    
《Journal of lipid research》2016,57(6):1097-1107
  相似文献   

17.
Candida tropicalis enoyl thioester reductase Etr1p and the Saccharomyces cerevisiae homologue Mrf1p catalyse the NADPH-dependent reduction of trans-2-enoyl thioesters in mitochondrial fatty acid synthesis (FAS). Unlike prokaryotic enoyl thioester reductases (ETRs), which belong to the short-chain dehydrogenases/reductases (SDR), Etr1p and Mrf1p represent structurally distinguishable ETRs that belong to the medium-chain dehydrogenases/reductases (MDR) superfamily, indicating independent origin of two separate classes of ETRs. The crystal structures of Etr1p, the Etr1p-NADPH complex and the Etr1Y79Np mutant were refined to 1.70A, 2.25A and 2.60A resolution, respectively. The native fold of Etr1p was maintained in Etr1Y79Np, but the mutant had only 0.1% of Etr1p catalytic activity remaining and failed to rescue the respiratory deficient phenotype of the mrf1Delta strain. Mutagenesis of Tyr73 in Mrf1p, corresponding to Tyr79 in Etr1p, produced similar results. Our data indicate that the mitochondrial reductase activity is indispensable for respiratory function in yeast, emphasizing the significance of Mrf1p (Etr1p) and mitochondrial FAS for the integrity of the respiratory competent organelle.  相似文献   

18.
    
The metabolic fates of radiolabeled sn-2-monoacylglycerol (MG) and oleate (FA) in rat and mouse intestine, added in vivo to the apical (AP) surface in bile salt micelles, or to the basolateral (BL) surface via albumin-bound solution, were examined. Mucosal lipid products were quantified, and the results demonstrate a dramatic difference in the esterification patterns for both MG and FA, depending upon their site of entry into the enterocyte. For both lipids, the ratio of triacylglycerol to phospholipid (TG:PL) formed was approximately 10-fold higher for delivery at the AP relative to the BL surface. Further, a 3-fold higher level of FA oxidation was found for BL compared with AP substrate delivery. Incorporation of FA into individual PL species was also significantly different, with >2-fold greater incorporation into phosphatidylethanolamine (PE) and a 3-fold decrease in the phosphatidylcholine:PE ratio for AP- compared with BL-added lipid. Overnight fasting increased the TG:PL incorporation ratio for both AP and BL lipid addition, suggesting that metabolic compartmentation is a physiologically regulated phenomenon. These results support the existence of separate pools of TG and glycerolipid intermediates in the intestinal epithelial cell, and underscore the importance of substrate trafficking in the regulation of enterocyte lipid metabolism.  相似文献   

19.
    
Microalgae are a promising resource for the highly sustainable production of various biomaterials (food and feed), high‐value biochemicals, or biofuels. However, factors influencing the valued lipid production from oleaginous algae require a more detailed investigation. This study elucidates the variations in lipid metabolites between a marine diatom (Cylindrotheca closterium) and a freshwater green alga (Scenedesmus sp.) under nitrogen starvation at the molecular species level, with emphasis on triacylglycerols using liquid chromatography–electrospray ionization mass spectrometry techniques. A comprehensive analysis was carried out by comparing the changes in total lipids, growth kinetics, fatty acid compositions, and glycerolipid profiles at the molecular species level at different time points of nitrogen starvation. A total of 60 and 72 triacylglycerol molecular species, along with numerous other polar lipids, were identified in Scenedesmus sp. and C. closterium, respectively, providing the most abundant triacylglycerol profiles for these two species. During nitrogen starvation, more triacylglycerol of Scenedesmus sp. was synthesized via the “eukaryotic pathway” in the endoplasmic reticulum, whereas the increase in triacylglycerol in C. closterium was mainly a result of the “prokaryotic pathway” in the chloroplasts after 96 h of nitrogen starvation. The distinct responses of lipid synthesis to nitrogen starvation exhibited by the two species indicate different strategies of lipid accumulation, notably triacylglycerols, in green algae and diatoms. Scenedesmus sp. and Cylindrotheca closterium could serve as excellent candidates for the mass production of biofuels or polyunsaturated fatty acids for nutraceutical purposes.  相似文献   

20.
    
Modified fatty acids (mFA) have diverse uses; for example, cyclopropane fatty acids (CPA) are feedstocks for producing coatings, lubricants, plastics and cosmetics. The expression of mFA‐producing enzymes in crop and model plants generally results in lower levels of mFA accumulation than in their natural‐occurring source plants. Thus, to further our understanding of metabolic bottlenecks that limit mFA accumulation, we generated transgenic Camelina sativa lines co‐expressing Escherichia coli cyclopropane synthase (EcCPS) and Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT). In contrast to transgenic CPA‐accumulating Arabidopsis, CPA accumulation in camelina caused only minor changes in seed weight, germination rate, oil accumulation and seedling development. CPA accumulated to much higher levels in membrane than storage lipids, comprising more than 60% of total fatty acid in both phosphatidylcholine (PC) and phosphatidylethanolamine (PE) versus 26% in diacylglycerol (DAG) and 12% in triacylglycerol (TAG) indicating bottlenecks in the transfer of CPA from PC to DAG and from DAG to TAG. Upon co‐expression of SfLPAT with EcCPS, di‐CPA‐PC increased by ~50% relative to lines expressing EcCPS alone with the di‐CPA‐PC primarily observed in the embryonic axis and mono‐CPA‐PC primarily in cotyledon tissue. EcCPS‐SfLPAT lines revealed a redistribution of CPA from the sn‐1 to sn‐2 positions within PC and PE that was associated with a doubling of CPA accumulation in both DAG and TAG. The identification of metabolic bottlenecks in acyl transfer between site of synthesis (phospholipids) and deposition in storage oils (TAGs) lays the foundation for the optimizing CPA accumulation through directed engineering of oil synthesis in target crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号