共查询到20条相似文献,搜索用时 15 毫秒
1.
Emily J. Howells Andrew G. Bauman Grace O. Vaughan Benjamin C. C. Hume Christian R. Voolstra John A. Burt 《Molecular ecology》2020,29(5):899-911
Reef‐building corals are at risk of extinction from ocean warming. While some corals can enhance their thermal limits by associating with dinoflagellate photosymbionts of superior stress tolerance, the extent to which symbiont communities will reorganize under increased warming pressure remains unclear. Here we show that corals in the hottest reefs in the world in the Persian Gulf maintain associations with the same symbionts across 1.5 years despite extreme seasonal warming and acute heat stress (≥35°C). Persian Gulf corals predominantly associated with Cladocopium (clade C) and most also hosted Symbiodinium (clade A) and/or Durusdinium (clade D). This is in contrast to the neighbouring and milder Oman Sea, where corals associated with Durusdinium and only a minority hosted background levels of Cladocopium. During acute heat stress, the higher prevalence of Symbiodinium and Durusdinium in bleached versus nonbleached Persian Gulf corals indicates that genotypes of these background genera did not confer bleaching resistance. Within symbiont genera, the majority of ITS2 rDNA type profiles were unique to their respective coral species, confirming the existence of host‐specific symbiont lineages. Notably, further differentiation among Persian Gulf sites demonstrates that symbiont populations are either isolated or specialized over tens to hundreds of kilometres. Thermal tolerance across coral species was associated with the prevalence of a single ITS2 intragenomic sequence variant (C3gulf), definitive of the Cladocopium thermophilum group. The abundance of C3gulf was highest in bleaching‐resistant corals and at warmer sites, potentially indicating a specific symbiont genotype (or set of genotypes) that may play a role in thermal tolerance that warrants further investigation. Together, our findings indicate that co‐evolution of host–Symbiodiniaceae partnerships favours fidelity rather than flexibility in extreme environments and under future warming. 相似文献
2.
Luke Thomas Elora H. Lpez Megan K. Morikawa Stephen R. Palumbi 《Molecular ecology》2019,28(14):3371-3382
3.
Timothy D. Swain Jesse B. Vega‐Perkins William K. Oestreich Conrad Triebold Emily DuBois Jillian Henss Andrew Baird Margaret Siple Vadim Backman Luisa Marcelino 《Global Change Biology》2016,22(7):2475-2488
As coral bleaching events become more frequent and intense, our ability to predict and mitigate future events depends upon our capacity to interpret patterns within previous episodes. Responses to thermal stress vary among coral species; however the diversity of coral assemblages, environmental conditions, assessment protocols, and severity criteria applied in the global effort to document bleaching patterns creates challenges for the development of a systemic metric of taxon‐specific response. Here, we describe and validate a novel framework to standardize bleaching response records and estimate their measurement uncertainties. Taxon‐specific bleaching and mortality records (2036) of 374 coral taxa (during 1982–2006) at 316 sites were standardized to average percent tissue area affected and a taxon‐specific bleaching response index (taxon‐BRI) was calculated by averaging taxon‐specific response over all sites where a taxon was present. Differential bleaching among corals was widely variable (mean taxon‐BRI = 25.06 ± 18.44%, ±SE). Coral response may differ because holobionts are biologically different (intrinsic factors), they were exposed to different environmental conditions (extrinsic factors), or inconsistencies in reporting (measurement uncertainty). We found that both extrinsic and intrinsic factors have comparable influence within a given site and event (60% and 40% of bleaching response variance of all records explained, respectively). However, when responses of individual taxa are averaged across sites to obtain taxon‐BRI, differential response was primarily driven by intrinsic differences among taxa (65% of taxon‐BRI variance explained), not conditions across sites (6% explained), nor measurement uncertainty (29% explained). Thus, taxon‐BRI is a robust metric of intrinsic susceptibility of coral taxa. Taxon‐BRI provides a broadly applicable framework for standardization and error estimation for disparate historical records and collection of novel data, allowing for unprecedented accuracy in parameterization of mechanistic and predictive models and conservation plans. 相似文献
4.
Coral bleaching involves the loss of essential photosynthetic dinoflagellates (Symbiodinium sp.) from host gastrodermal cells in response to temperature or light stress. Although numerous potential cellular bleaching mechanisms have been proposed, there remains much uncertainty regarding which cellular events occur during early breakdown of the host–dinoflagellate symbiosis. In this study, transmission electron microscopy was used to conduct a detailed examination of symbiotic tissues of the tropical anemone Aiptasia pallida during early stages of host stress. Bleaching was induced by exposing specimens to a stress treatment of 32.5±0.5°C at 140±7 μ mol photons m?2 s?1 light intensity for 12 h, followed by 12 h at 24±1°C in darkness, repeated over a 48 h period. Ultrastructural examinations revealed numerous dense autophagic structures and associated cellular degradation in tentacle tissues after ~12 h of the stress treatment. Anemones treated with rapamycin, a known autophagy inducer, exhibited the same ultrastructural characteristics as heat‐stressed tissues, confirming that the structures observed during heat stress treatment were autophagic. In addition, symbionts appeared to be expelled from host cells via an apocrine‐like detachment mechanism from the apical ends of autophagic gastrodermal cells. This study provides the first ultrastructural evidence of host autophagic degradation during thermal stress in a cnidarian system and also supports earlier suggestions that autophagy is an active cellular mechanism during early stages of bleaching. 相似文献
5.
Benjamin C. C. Hume Cecilia D'Angelo Edward G. Smith Jamie R. Stevens John A. Burt Jörg Wiedenmann 《Journal of phycology》2018,54(5):762-764
The binary designation Symbiodinium thermophilum was invalid due to the absence of an illustration as required by Article 44.2 of the ICN. Herein, it is validated. This species is the most common symbiont in reef corals in the southern Persian/Arabian Gulf, the world's hottest body of water sustaining reef coral growth. 相似文献
6.
Carys A. Morgans Julia Y. Hung David G. Bourne Kate M. Quigley 《Restoration Ecology》2020,28(2):282-288
Coral reefs are currently under threat as a consequence of local and global stressors, in particular, mass coral bleaching induced by climate warming. In conjunction with global cuts to carbon emissions, active restoration interventions are being investigated as an additional option to buy time while these stressors are mitigated. One intervention with the potential to improve recovery during or postbleaching involves the addition of probiotic treatments, that is the addition of microorganisms that provide benefits to the host. Fragments of the branching coral, Acropora millepora, were experimentally exposed to a bleaching event coupled with the inoculation of Symbiodiniaceae probiotics (Durusdinium trenchii and Cladocopium goreaui) to determine if these probiotic treatments could ameliorate bleaching related stress and mortality. Fragments inoculated with C. goreaui and exposed to 32°C for 6 days exhibited significantly less mortality (9.1 ± 5%) compared to corals exposed to 32°C without probiotics (66.7 ± 8%) or with D. trenchii (41.7 ± 9%). Fragments in the C. goreaui probiotic treatment also bleached less and exhibited the highest photosynthetic efficiency compared to fragments inoculated with the D. trenchii at 32°C. Internal transcribed spacer‐2 amplicon sequencing did not detect the inoculated D. trenchii and C. goreaui cells within A. millepora tissues at the end of the experiment, suggesting the corals did not reestablish symbiosis but instead used inoculated cells as a nutritional supplement, although other factors such as shuffling conditions may have had an effect. This study highlights that nutritional supplementation can possibly aid coral resilience to temperature stress, though a far more detailed understanding of the factors that influence host regulation during symbiosis establishment is required. 相似文献
7.
Much of our understanding of the cellular mechanisms underlying cnidarian‐algal symbiosis comes from studying the biological differences between the partners when they are engaged in symbiosis and when they are isolated from one another. When comparing the in hospite and ex hospite states in Symbiodiniaceae, the in hospite state is represented by algae sampled from hosts, and the ex hospite state is commonly represented by cultured algae. The use of cultured algae in this comparison may introduce nutrition as a confounding variable because, while hosts are kept in nutrient‐depleted conditions, culture media is nutrient rich and designed to facilitate algal growth. In this perspective, we reexamine how nutrition may be a confounding variable in studies that compare the biology of Symbiodiniaceae in hospite and in culture. We also suggest several innovations in experimental design to strengthen the comparison of the two lifestyles, including the adoption of nutritional controls, alternatives to culture for the representation of Symbiodiniaceae ex hospite, and the adoption of several proteomic approaches to find novel Symbiodiniaceae genes important for symbiosis. 相似文献
8.
9.
Katherine E. Dziedzic Holland Elder Hannah Tavalire Eli Meyer 《Molecular ecology》2019,28(9):2238-2253
10.
Michael Stat Xavier Pochon Erik C. Franklin John F. Bruno Kenneth S. Casey Elizabeth R. Selig Ruth D. Gates 《Ecology and evolution》2013,3(5):1317-1329
Spatially intimate symbioses, such as those between scleractinian corals and unicellular algae belonging to the genus Symbiodinium, can potentially adapt to changes in the environment by altering the taxonomic composition of their endosymbiont communities. We quantified the spatial relationship between the cumulative frequency of thermal stress anomalies (TSAs) and the taxonomic composition of Symbiodinium in the corals Montipora capitata, Porites lobata, and Porites compressa across the Hawaiian archipelago. Specifically, we investigated whether thermally tolerant clade D Symbiodinium was in greater abundance in corals from sites with high frequencies of TSAs. We recovered 2305 Symbiodinium ITS2 sequences from 242 coral colonies in lagoonal reef habitats at Pearl and Hermes Atoll, French Frigate Shoals, and Kaneohe Bay, Oahu in 2007. Sequences were grouped into 26 operational taxonomic units (OTUs) with 12 OTUs associated with Montipora and 21 with Porites. Both coral genera associated with Symbiodinium in clade C, and these co‐occurred with clade D in M. capitata and clade G in P. lobata. The latter represents the first report of clade G Symbiodinium in P. lobata. In M. capitata (but not Porites spp.), there was a significant correlation between the presence of Symbiodinium in clade D and a thermal history characterized by high cumulative frequency of TSAs. The endogenous community composition of Symbiodinium and an association with clade D symbionts after long‐term thermal disturbance appear strongly dependent on the taxa of the coral host. 相似文献
11.
The detrimental effect of climate change induced bleaching on Caribbean coral reefs has been widely documented in recent decades. Several studies have suggested that increases in the abundance of thermally tolerant endosymbionts may ameliorate the effect of climate change on reefs. Symbionts that confer tolerance to temperature also reduce the growth rate of their coral host. Here, we show, using a spatial ecosystem model, that an increment in the abundance of a thermally tolerant endosymbiont (D1a) is unlikely to ensure the persistence of Caribbean reefs, or to reduce their rate of decline, due to the concomitant reduction in growth rate under current thermal stress predictive scenarios. Furthermore, our results suggest that given the documented vital rates of D1a‐dominated corals, increasing dominance of D1a in coral hosts may have a detrimental effect by reducing the resilience of Caribbean reefs, and preventing their long‐term recovery. This is because Caribbean ecosystems appear to be highly sensitive to changes in the somatic growth rate of corals. Alternative outcomes might be expected in systems with different community‐level dynamics such as reefs in the Indo‐Pacific, where the ecological costs of reduced growth rate might be far smaller. 相似文献
12.
Daniel J. Thornhill Yu Xiang D. Tye Pettay Min Zhong Scott R. Santos 《Molecular ecology》2013,22(17):4499-4515
The Aiptasia–Symbiodinium symbiosis is a promising model for experimental studies of cnidarian–dinoflagellate associations, yet relatively little is known regarding the genetic diversity of either symbiotic partner. To address this, we collected Aiptasia from 16 localities throughout the world and examined the genetic diversity of both anemones and their endosymbionts. Based on newly developed SCAR markers, Aiptasia consisted of two genetically distinct populations: one Aiptasia lineage from Florida and a second network of Aiptasia genotypes found at other localities. These populations did not conform to the distributions of described Aiptasia species, suggesting that taxonomic re‐evaluation is needed in the light of molecular genetics. Associations with Symbiodinium further demonstrated the distinctions among Aiptasia populations. According to 18S RFLP, ITS2‐DGGE and microsatellite flanker region sequencing, Florida anemones engaged in diverse symbioses predominantly with members of Symbiodinium Clades A and B, but also C, whereas anemones from elsewhere harboured only S. minutum within Clade B. Symbiodinium minutum apparently does not form a stable symbiosis with other hosts, which implies a highly specific symbiosis. Fine‐scale differences among S. minutum populations were quantified using six microsatellite loci. Populations of S. minutum had low genotypic diversity and high clonality (R = 0.14). Furthermore, minimal population structure was observed among regions and ocean basins, due to allele and genotype sharing. The lack of genetic structure and low genotypic diversity suggest recent vectoring of Aiptasia and S. minutum across localities. This first ever molecular‐genetic study of a globally distributed cnidarian and its Symbiodinium assemblages reveals host–symbiont specificity and widely distributed populations in an important model system. 相似文献
13.
Leela J. Chakravarti Victor H. Beltran Madeleine J. H. van Oppen 《Global Change Biology》2017,23(11):4675-4688
Climate warming is occurring at a rate not experienced by life on Earth for 10 s of millions of years, and it is unknown whether the coral‐dinoflagellate (Symbiodinium spp.) symbiosis can evolve fast enough to ensure coral reef persistence. Coral thermal tolerance is partly dependent on the Symbiodinium hosted. Therefore, directed laboratory evolution in Symbiodinium has been proposed as a strategy to enhance coral holobiont thermal tolerance. Using a reciprocal transplant design, we show that the upper temperature tolerance and temperature tolerance range of Symbiodinium C1 increased after ~80 asexual generations (2.5 years) of laboratory thermal selection. Relative to wild‐type cells, selected cells showed superior photophysiological performance and growth rate at 31°C in vitro, and performed no worse at 27°C; they also had lower levels of extracellular reactive oxygen species (exROS). In contrast, wild‐type cells were unable to photosynthesise or grow at 31°C and produced up to 17 times more exROS. In symbiosis, the increased thermal tolerance acquired ex hospite was less apparent. In recruits of two of three species tested, those harbouring selected cells showed no difference in growth between the 27 and 31°C treatments, and a trend of positive growth at both temperatures. Recruits that were inoculated with wild‐type cells, however, showed a significant difference in growth rates between the 27 and 31°C treatments, with a negative growth trend at 31°C. There were no significant differences in the rate and severity of bleaching in coral recruits harbouring wild‐type or selected cells. Our findings highlight the need for additional Symbiodinium genotypes to be tested with this assisted evolution approach. Deciphering the genetic basis of enhanced thermal tolerance in Symbiodinium and the cause behind its limited transference to the coral holobiont in this genotype of Symbiodinium C1 are important next steps for developing methods that aim to increase coral bleaching tolerance. 相似文献
14.
15.
James L. Dimond Brian L. Bingham Gisè le Muller‐Parker Clinton A. Oakley 《Journal of phycology》2013,49(6):1074-1083
For cnidarians that can undergo shifts in algal symbiont relative abundance, the underlying algal physiological changes that accompany these shifts are not well known. The sea anemone Anthopleura elegantissima associates with the dinoflagellate Symbiodinium muscatinei and the chlorophyte Elliptochloris marina, symbionts with very different tolerances to light and temperature. We compared the performance of these symbionts in anemones maintained in an 8–11.5 month outdoor common garden experiment with simulated intertidal conditions and three levels of shading (2, 43, and 85% ambient irradiance). Symbiont densities, mitotic indices, photophysiology and pigments were assessed at three time points during the summer, a period of high irradiance and solar heating during aerial exposure. Whereas S. muscatinei was either neutrally or positively affected by higher irradiance treatments, E. marina responded mostly negatively to high irradiance. E. marina in the 85% irradiance treatment exhibited significantly reduced Pmax and chlorophyll early in the summer, but it was not until nearly 3 months later that a shift in symbiont relative abundance toward S. muscatinei occurred, coincident with bleaching. Symbiont densities and proportions remained largely stable in all other treatments over time, and displacement of S. muscatinei by E. marina was not observed in the 2% irradiance treatment despite the potentially better performance of E. marina. While our results support the view that rapid changes in symbiont relative abundance are typically associated with symbiont physiological dysfunction and bleaching, they also show that significant temporal lags may occur between the onset of symbiont stress and shifts in symbiont relative abundances. 相似文献
16.
Claudia Pogoreutz Nils Rädecker Anny Cárdenas Astrid Gärdes Christian R. Voolstra Christian Wild 《Global Change Biology》2017,23(9):3838-3848
The disruption of the coral–algae symbiosis (coral bleaching) due to rising sea surface temperatures has become an unprecedented global threat to coral reefs. Despite decades of research, our ability to manage mass bleaching events remains hampered by an incomplete mechanistic understanding of the processes involved. In this study, we induced a coral bleaching phenotype in the absence of heat and light stress by adding sugars. The sugar addition resulted in coral symbiotic breakdown accompanied by a fourfold increase of coral‐associated microbial nitrogen fixation. Concomitantly, increased N:P ratios by the coral host and algal symbionts suggest excess availability of nitrogen and a disruption of the nitrogen limitation within the coral holobiont. As nitrogen fixation is similarly stimulated in ocean warming scenarios, here we propose a refined coral bleaching model integrating the cascading effects of stimulated microbial nitrogen fixation. This model highlights the putative role of nitrogen‐fixing microbes in coral holobiont functioning and breakdown. 相似文献
17.
Linda Tonk Eugenia M. Sampayo Aaron Chai Verena Schrameyer Ove Hoegh‐Guldberg 《Journal of phycology》2017,53(3):589-600
The broad range in physiological variation displayed by Symbiodinium spp. has proven imperative during periods of environmental change and contribute to the survival of their coral host. Characterizing how host and Symbiodinium community assemblages differ across environmentally distinct habitats provides useful information to predict how corals will respond to major environmental change. Despite the extensive characterizations of Symbiodinium diversity found amongst reef cnidarians on the Great Barrier Reef (GBR) substantial biogeographic gaps exist, especially across inshore habitats. Here, we investigate Symbiodinium community patterns in invertebrates from inshore and mid‐shelf reefs on the southern GBR, Australia. Dominant Symbiodinium types were characterized using denaturing gradient gel electrophoresis fingerprinting and sequencing of the ITS2 region of the ribosomal DNA. Twenty one genetically distinct Symbiodinium types including four novel types were identified from 321 reef‐invertebrate samples comprising three sub‐generic clades (A, C, and D). A range of host genera harbored C22a, which is normally rare or absent from inshore or low latitude reefs in the GBR. Multivariate analysis showed that host identity and sea surface temperature best explained the variation in symbiont communities across sites. Patterns of changes in Symbiodinium community assemblage over small geographic distances (100s of kilometers or less) indicate the likelihood that shifts in Symbiodinium distributions and associated host populations, may occur in response to future climate change impacting the GBR. 相似文献
18.
Nils Rädecker Claudia Pogoreutz Maren Ziegler Ananya Ashok Marcelle M. Barreto Veronica Chaidez Carsten G. B. Grupstra Yi Mei Ng Gabriela Perna Manuel Aranda Christian R. Voolstra 《Ecology and evolution》2017,7(16):6614-6621
The productivity of coral reefs in oligotrophic tropical waters is sustained by an efficient uptake and recycling of nutrients. In reef‐building corals, the engineers of these ecosystems, this nutrient recycling is facilitated by a constant exchange of nutrients between the animal host and endosymbiotic photosynthetic dinoflagellates (zooxanthellae), bacteria, and other microbes. Due to the complex interactions in this so‐called coral holobiont, it has proven difficult to understand the environmental limitations of productivity in corals. Among others, the micronutrient iron has been proposed to limit primary productivity due to its essential role in photosynthesis and bacterial processes. Here, we tested the effect of iron enrichment on the physiology of the coral Pocillopora verrucosa from the central Red Sea during a 12‐day experiment. Contrary to previous reports, we did not see an increase in zooxanthellae population density or gross photosynthesis. Conversely, respiration rates were significantly increased, and microbial nitrogen fixation was significantly decreased. Taken together, our data suggest that iron is not a limiting factor of primary productivity in Red Sea corals. Rather, increased metabolic demands in response to iron enrichment, as evidenced by increased respiration rates, may reduce carbon (i.e., energy) availability in the coral holobiont, resulting in reduced microbial nitrogen fixation. This decrease in nitrogen supply in turn may exacerbate the limitation of other nutrients, creating a negative feedback loop. Thereby, our results highlight that the effects of iron enrichment appear to be strongly dependent on local environmental conditions and ultimately may depend on the availability of other nutrients. 相似文献
19.
Linda Tonk Eugenia M. Sampayo Todd C. LaJeunesse Verena Schrameyer Ove Hoegh‐Guldberg 《Journal of phycology》2014,50(3):552-563
Despite extensive work on the genetic diversity of reef invertebrate‐dinoflagellate symbioses on the Great Barrier Reef (GBR; Australia), large information gaps exist from northern and inshore regions. Therefore, a broad survey was done comparing the community of inshore, mid‐shelf and outer reefs at the latitude of Lizard Island. Symbiodinium (Freudenthal) diversity was characterized using denaturing gradient gel electrophoresis fingerprinting and sequencing of the ITS2 region of the ribosomal DNA. Thirty‐nine distinct Symbiodinium types were identified from four subgeneric clades (B, C, D, and G). Several Symbiodinium types originally characterized from the Indian Ocean were discovered as well as eight novel types (C1kk, C1LL, C3nn, C26b, C161a, C162, C165, C166). Multivariate analyses on the Symbiodinium species diversity data showed a strong link with host identity, consistent with previous findings. Of the four environmental variables tested, mean austral winter sea surface temperature (SST) influenced Symbiodinium distribution across shelves most significantly. A similar result was found when the analysis was performed on Symbiodinium diversity data of genera with an open symbiont transmission mode separately with chl a and PAR explaining additional variation. This study underscores the importance of SST and water quality related variables as factors driving Symbiodinium distribution on cross‐shelf scales. Furthermore, this study expands our knowledge on Symbiodinium species diversity, ecological partitioning (including host‐specificity) and geographic ranges across the GBR. The accelerating rate of environmental change experienced by coral reef ecosystems emphasizes the need to comprehend the full complexity of cnidarian symbioses, including the biotic and abiotic factors that shape their current distributions. 相似文献
20.
Stephanie A. Schopmeyer Diego Lirman Erich Bartels James Byrne David S. Gilliam John Hunt Meaghan E. Johnson Elizabeth A. Larson Kerry Maxwell Ken Nedimyer Cory Walter 《Restoration Ecology》2012,20(6):696-703
During an unusual cold‐water event in January 2010, reefs along the Florida Reef Tract suffered extensive coral mortality, especially in shallow reef habitats in close proximity to shore and with connections to coastal bays. The threatened staghorn coral, Acropora cervicornis, is the focus of propagation and restoration activities in Florida and one of the species that exhibited high susceptibility to low temperatures. Complete mortality of wild staghorn colonies was documented at 42.9% of donor sites surveyed after the cold event. Remarkably, 72.7% of sites with complete A. cervicornis mortality had fragments surviving within in situ coral nurseries. Thus, coral nurseries served as repositories for genetic material that would have otherwise been completely lost from donor sites. The location of the coral nurseries at deeper habitats and distanced from shallow nearshore habitats that experienced extreme temperature conditions buffered the impacts of the cold‐water event and preserved essential local genotypes for future Acropora restoration activities. 相似文献