共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The dawn of plant salt tolerance genetics 总被引:12,自引:0,他引:12
3.
盐胁迫下囊果碱蓬出苗状况及苗期抗盐性 总被引:3,自引:0,他引:3
研究了盐胁迫对囊果碱蓬出苗、幼苗生长、离子积累以及光合放氧速率的影响.囊果碱蓬生长的最适盐浓度在200 mmol/L NaCl左右.高浓度NaCl(400 mmol/L和600 mmol/L)没有显著降低其出苗率,200 mmol/L NaCl对出苗率具有促进作用.400 mmol/L和600 mmol/L NaCl显著降低了光合放氧速率.囊果碱蓬在高浓度NaCl处理下能够维持叶片较高的K+/Na+ 及含水量可能是其适应高盐生境的重要机制. 相似文献
4.
Summary A normally grown crop of sunflower on red sandy loam soils was found to remove considerable quantities of chloride and sodium. On heavy clay soils with saline patches sunflower plants removed large quantities of sodium followed by chloride and sulphate. In view of its salt tolerance, it is suggested that intercropping or rotation with sunflower might help reduce soil salinity and improve soil conditions where salinity problems are coming up especially in heavy clay soils with low permeability. re]19720711 相似文献
5.
盐胁迫下树种幼苗生长及其耐盐性 总被引:16,自引:1,他引:16
采用盆栽方法,以11个树种实生幼苗为材料,用不同浓度(0、3、5、8 g·kg-1和10 g·kg-1)NaCl溶液进行1次性浇灌处理,对盐胁迫下各树种的形态表现、生长及耐盐性进行了研究,结果表明:(1)当盐含量达到8 g·kg-1时,欧洲荚蒾、甜桦和光叶漆植株死亡,当含量增加到10 g·kg-1时,沃氏金链花植株死亡,其它各存活树种也均出现不同程度的盐害症状;(2)盐胁迫后,各树种的苗高生长量下降、生物量累积减少,且随着处理浓度的增加均呈下降趋势,其中榆桔、甜桦和光叶漆的降幅最大;(3)盐处理后,各树种的根冠比值增大,其中盐胁迫对光叶漆、银水牛果和沃氏金链花有显著影响(p<0.05);(4)综合分析各树种的生长和形态表现,认为日本丁香、银水牛果、三裂叶漆和豆梨具有高度耐盐性,沃氏金链花、金雀儿、鹰爪豆和榆桔具有中高度耐盐性,而欧洲荚蒾、甜桦和光叶漆具有中度耐盐性. 相似文献
6.
采用营养液栽培,研究Ca(NO3)2和NaCl胁迫对黄瓜嫁接用砧木南瓜幼苗生长和抗氧化酶活性的影响,并用隶属函数法综合评价其耐盐性.结果表明:低浓度盐30 mmol·L-1Ca(NO3)2和等渗的45 mmol·L-1 NaCl处理促进砧木幼苗生长;高浓度盐60、120 mmol·L-1Ca(NO3)2和等渗的90、180 mmol·L-1NaCl胁迫下,各砧木幼苗的生长和抗氧化酶系统均受到不同程度的抑制,其中,‘青砧1号’的盐害指数最小,生物量及超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性的下降幅度以及相对电导率的上升幅度均小于其他砧木.高盐Ca(NO3)2胁迫下,各砧木SOD、POD和CAT酶活性均高于等渗的NaCl,而盐害指数和相对电导率低于NaCl,表明Ca(NO3)2对砧木南瓜幼苗生长的危害小于NaCl.4个砧木品种的耐盐性顺序为‘青砧1号’>‘佐木南瓜’>‘丰源铁甲’>‘超霸南瓜’. 相似文献
7.
Salt stress effects on the photosynthetic electron transport chain in two chickpea lines differing in their salt stress tolerance 总被引:1,自引:0,他引:1
Nuran Çiçek Abdallah Oukarroum Reto J. Strasser Gert Schansker 《Photosynthesis research》2018,136(3):291-301
The main objective of this study was to evaluate the effects of salt stress on the photosynthetic electron transport chain using two chickpea lines (Cicer arietinum L.) differing in their salt stress tolerance at the germination stage (AKN 87 and AKN 290). Two weeks after sowing, seedlings were exposed to salt stress for 2 weeks and irrigated with 200 ml of 200 mM NaCl every 2 days. The polyphasic OJIP fluorescence transient and the 820-nm transmission kinetics (photosystem I) were used to evaluate the effects of salt stress on the functionality of the photosynthetic electron transport chain. It was observed that a signature for salt stress was a combination of a higher J step (VJ), a smaller IP amplitude, and little or no effect on the primary quantum yield of PSII (φPo). We observed for AKN 290 a shorter leaf life cycle, which may represent a mechanism to cope with salt stress. For severely salt-stressed leaves, an inhibition of electron flow between the PQ pool and P700 was found. The data also suggest that the properties of electron flow beyond PSI are affected by salt stress. 相似文献
8.
以盐碱荒漠草甸药用植物胀果甘草(Glycyrrhiza inflata)为材料, 采用水培法研究了盐处理(50、100、200、300 mmol·L-1NaCl) 28天后幼苗株高、生物量、含水量、根粗、甘草酸含量和不同器官的离子含量及离子的选择吸收、运输能力, 并对丙二醛、脯氨酸含量进行测定, 以确定其耐盐范围及耐盐方式。结果表明, 低盐浓度对胀果甘草幼苗生长无显著影响, 只有较高盐浓度(≥200 mmol·L-1 NaCl)使幼苗总生物量、株高、甘草酸含量显著降低; 根据耐盐系数与盐浓度的拟合方程, 确定适宜幼苗生长的盐浓度范围为0-278.17 mmol·L-1。随盐浓度上升, 植株选择性吸收K+、Ca2+、Mg2+, 而抑制Na+进入体内, 幼苗对进入植株体内的Na+在不同盐浓度下采取了不同的分配策略, 低盐浓度下(0-100 mmol·L-1), 植株体内Na+主要积累在根中, 避免了叶中Na+的过多积累, 其盐适应机制以耐盐方式为主; 高盐浓度下(≥200 mmol·L-1 NaCl), Na+主要积累在下部叶, 并通过叶片脱落的方式带走体内的盐分, 其盐适应机制以避盐方式为主。盐胁迫下, 幼苗能促进K+而抑制Na+向上部叶的运输, 使上部叶拒Na喜K, 维持了较高的K+/Na+比值, 有利于幼苗生长; 同时, 地下根系能通过积累Ca2+、Mg2+和合成脯氨酸、甘草酸, 以提高渗透调节能力, 缓解Na+毒害, 使根的生长不受影响, 有利于保证幼苗在盐环境中吸收维持生长的必要养分, 这是胀果甘草幼苗具有较强耐盐性的原因。以上结果说明, 胀果甘草幼苗通过对盐离子的吸收和运输调控、离子区域化和渗透调节, 以耐盐和避盐两种方式适应盐碱荒漠环境。 相似文献
9.
《Journal of Plant Interactions》2013,8(4):275-282
In order to discriminate between the ionic and osmotic components of salt stress, sugarcane (Saccharum officinarum L. cv. Co 86032) plants were treated with salt-NaCl or polyethylene glycol-PEG 8000 solutions (?0.7 MPa) for 15 days. Both the salt and PEG treatments significantly reduced leaf width, number of green leaves, and chlorophyll stability index. Osmotic adjustment (OA) indicated that both the stresses led to significant accumulation of osmolytes and sugars. Salt stressed plants appeared to use salt as an osmoticum while the PEG stressed plants showed an accumulation of sugars. Oxidative damage to membranes was not severe in plants subjected to salt or PEG stress. The salt stressed plants showed an increase in the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX), while PEG stress led to an increase in SOD but not APX activity as compared to the control. Thus, results indicate that the iso-osmotic salt or PEG stress led to differential responses in plants especially with respect to growth, OA, and antioxidant enzyme activities. 相似文献
10.
The plant cytoskeleton is a highly dynamic component of plant cells and mainly based on microtubules (MTs) and actin filaments (AFs). The important functions of dynamic cytoskeletal networks have been indicated for almost every intracellular activity, from cell division to cell movement, cell morphogenesis and cell signal transduction. Recent studies have also indicated a close relationship between the plant cytoskeleton and plant salt stress tolerance. Salt stress is a significant factor that adversely affects crop productivity and quality of agricultural fields worldwide. The complicated regulatory mechanisms of plant salt tolerance have been the subject of intense research for decades. It is well accepted that cellular changes are very important in plant responses to salt stress. Because the organization and dynamics of cytoskeleton may play an important role in enhancing plant tolerance through various cell activities, study on salt stress-induced cytoskeletal network has been a vital topic in the subject of plant salt stress tolerance mechanisms. In this article, we introduce our recent work and review some current information on the dynamic changes and functions of cytoskeletal organization in response to salt stress. The accumulated data point to the existence of highly dynamic cytoskeletal arrays and the activation of complex cytoskeletal regulatory networks in response to salt stresses. The important role played by cytoskeleton in mediating the plant cell''s response to salt stresses is particularly emphasized.Key words: cytoskeleton, microtubules (MTs), microfilaments (MFs), salt stress, response mechanisms, plant tolerance 相似文献
11.
12.
Davood Kiani Hassan Soltanloo Seyyede Sanaz Ramezanpour Ali Asghar Nasrolahnezhad Qumi Ahad Yamchi Khalil Zaynali Nezhad Elahe Tavakol 《Acta Physiologiae Plantarum》2017,39(3):90
To investigate key regulatory components and genes with great impact on salt tolerance, near isogenic or mutant lines with distinct salinity tolerance are suitable genetic materials to simplify and dissect the complex genes networks. In this study, we evaluated responses of a barley mutant genotype (73-M4-30), in comparison with its wild-type background (Zarjou) under salt stress. Although the root growth of both genotypes was significantly decreased by exposure to sodium chloride (NaCl), the effect was greater in the wild type. The chlorophyll content decreased under salt stress for the wild type, but no change occurred in the mutant. The mutant maintained the steady-state level of [K+] and significantly lower [Na+] concentrations in roots and higher [K+]/[Na+] ratio in shoots under salt conditions. The catalase (CAT), peroxidase (POD) activity, and proline content were higher in the mutant than those in the wild type under controlled conditions. The soluble proline was higher after 24 h of salt stress in roots of the mutant but was higher after 96 h of salt stress in the wild type. The CAT and POD activity of the mutant increased under salt stress which was as a coincidence to lower levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents. The ratio of dry-to-fresh weight of the roots increased for the mutant under salt stress which was as a result of the higher phenylalanine ammonia-lyase (PAL) gene expression and peroxidase activity and involved in cell wall lignification. Consequently, it seems that ion homeostasis and increased peroxidase activity have led to salt tolerance in the mutant’s genotype. 相似文献
13.
14.
Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress 总被引:19,自引:0,他引:19
Effects of arbuscular mycorrhizal fungi (AMF) and salt stress on nutrient acquisition and growth of two tomato cultivars exhibiting
differences in salt tolerance were investigated. Plants were grown in a sterilized, low-P (silty clay) soil-sand mix. Salt
was applied at saturation extract (ECe) values of 1.4 (control), 4.9 (medium) and 7.1 dS m–1 (high salt stress). Mycorrhizal colonization occurred irrespective of salt stress in both cultivars, but AMF colonization
was higher under control than under saline soil conditions. The salt-tolerant cultivar Pello showed higher mycorrhizal colonization
than the salt-sensitive cultivar Marriha. Shoot dry matter (DM) yield and leaf area were higher in mycorrhizal than nonmycorrhizal
plants of both cultivars. Shoot DM and leaf area but not root DM were higher in Pello than Marriha. The enhancement in shoot
DM due to AMF inoculation was 22% and 21% under control, 31% and 58% under medium, and 18% and 59% under high salinity for
Pello and Marriha, respectively. For both cultivars, the contents of P, K, Zn, Cu, and Fe were higher in mycorrhizal than
nonmycorrhizal plants under control and medium saline soil conditions. The enhancement in P, K, Zn, Cu, and Fe acquisition
due to AMF inoculation was more pronounced in Marriha than in the Pello cultivar under saline conditions. The results suggest
that Marriha benefited more from AMF colonization than Pello under saline soil conditions, despite the fact that Pello roots
were highly infected with the AMF. Thus, it appears that Marriha is more dependent on AMF symbiosis than Pello.
Accepted: 22 January 2001 相似文献
15.
16.
Greenway H 《Plant physiology》1972,49(2):256-259
Enzymes which are affected by the addition of inorganic salts during in vitro assay were extracted from salt-sensitive Phaseolus vulgaris, salt-tolerant Atriplex spongiosa, and Salicornia australis and tested for sensitivity to NaCl. In each case malate dehydrogenase, aspartate transaminase, glucose 6-phosphate dehydrogenase, and isocitrate dehydrogenase showed NaCl responses similar to those found for commercially available crystalline enzymes from other organisms. Enzymes extracted from plants grown in saline cultures showed no important changes in specific activity or salt sensitivity. Interaction of pH optima and NaCl concentrations suggests that enzymes may differ in the way they respond to salt treatment. 相似文献
17.
Philip Batterham Andrew G. Davies Anne Y. Game John A. McKenzie 《BioEssays : news and reviews in molecular, cellular and developmental biology》1996,18(10):841-845
The mechanisms responsible for the fine tuning of development, where the wildtype phenotype is reproduced with high fidelity, are not well understood. The difficulty in approaching this problem is the identification of mutant phenotypes indicative of a defect in these fine-tuning control mechanisms. Evolutionary biologists have used asymmetry as a measure of developmental homeostasis. The rationale for this was that, since the same genome controls the development of the left and right sides of a bilaterally symmetrical organism, departures from symmetry can be used to measure genetic or environmental perturbations. This paper examines the relationship between asymmtry and resistance to organophosphorous insecticides in the Australian sheep blowfly, Lucilia cuprina. A resistance gene, Rop-1, which encodes a carboxylesterase enzyme, also confers a significant increase in asymmetry. Continued exposure of resistant populations to insecticide has selected a dominant suppressor of the asymmetry phenotype. Genetic evidence indicates that the modifier is the L. cuprina Notch homologue. 相似文献
18.
Approaches to improve stress tolerance using molecular genetics 总被引:12,自引:2,他引:12
Plant productivity is greatly affected by environmental stress factors. In this review, we give an overview of molecular approaches that have been taken to study stress tolerance; in particular, we consider drought, salt and cold stress. Strategies and perspectives in using molecular biology to improve stress tolerance are outlined describing specific examples. Osmotic stress is associated with the synthesis of novel polypeptides and/or osmolytes. The spectrum and action of these different metabolites are summarized. A number of stress-related genes have been characterized and several representatives are discussed. After transforming plants with these genes, the effect of the encoded proteins on altered stress behaviour is examined. If genes with enzymatic functions were chosen for these experiments, complete pathways may be altered and this can implement the production of novel metabolites conferring stress tolerance. 相似文献
19.
Mechanisms of salt stress tolerance development in barley plants under the influence of 5-aminolevulinic acid 总被引:1,自引:0,他引:1
N. G. Averina E. R. Gritskevich I. V. Vershilovskaya A. V. Usatov E. B. Yaronskaya 《Russian Journal of Plant Physiology》2010,57(6):792-798
Growing barley (Hordeum vulgare L.) plants for 7 days on NaCl solutions (20–200 mM) decreased chlorophyll (Chl) a and b content with respect to that in untreated control plants. The content of free proline and the plant ability to synthesize 5-aminolevulinic acid (ALA) started to increase in parallel at salt concentrations of 20–50 mM. The maximum amount of ALA accumulated in plants grown at 100 mM NaCl was twofold higher than in control plants grown on fresh water. In this case the proline content increased 2.8-fold. On further increase in salt concentration, the rate of ALA accumulation decreased, approaching control values at 150 mM NaCl; even lower rates were observed at 200 mM NaCl. The reduced ability to synthesize ALA was accompanied by an increase in proline content. The albino tissue of plants treated at the seed stage with the antibiotic streptomycin lost its ability to synthesize ALA needed for Chl formation. The proline content in the albino tissue was tenfold higher than in control green plants and was 30-fold higher when the plants were grown on solutions with 100 mM NaCl. No effect of NaCl on ALA-dehydratase activity was noted. As NaCl concentration was raised, there occurred the decrease in magnesium chelatase activity, accumulation of reactive oxygen species (ROS), the increase in ascorbate peroxidase activity, and a slight decrease in lipid peroxidation level. Growing plants in the presence of 150 mM NaCl and 10 or 60 mg/l exogenous ALA led to the increase in proline content (by a factor of 1.8 and 4.2, respectively) and to the decrease in ROS content, in comparison with plants grown on salt solutions without ALA. Furthermore, in the presence of exogenous ALA, the parameters of seedling growth became similar to those of NaCl-untreated plants. The role of ALA in plants as an antistress agent is considered. ALA is supposed to confer tolerance to salt stress by taking part in Chl and heme biosynthesis and also through functioning as a plant growth regulator. A hypothesis is put forward that the impairment of ALA-synthesizing ability may redirect metabolic conversions of glutamic acid from Chl and heme synthesis to the proline synthesis pathway, which would stimulate proline biosynthesis and improve salt tolerance. 相似文献
20.
Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus 总被引:45,自引:0,他引:45
Salt damage to plants has been attributed to a combination of several factors including mainly osmotic stress and the accumulation
of toxic ions. Recent findings in our laboratory showed that phospholipid hydroperoxide glutathione peroxidase (PHGPX), an
enzyme active in the cellular antioxidant system, was induced by salt in citrus cells and mainly in roots of plants. Following
this observation we studied the two most important enzymes active in elimination of reactive oxygen species, namely, superoxide
dismutase (SOD) and ascorbate peroxidase (APX), to determine whether a general oxidative stress is induced by salt. While
Cu/Zn-SOD activity and cytosolic APX protein level were similarly induced by salt and methyl viologen, the response of PHGPX
and other APX isozymes was either specific to salt or methyl viologen, respectively. Unlike PHGPX, cytosolic APX and Cu/Zn-SOD
were not induced by exogenously added abscisic acid. Salt induced a significant increase in SOD activity which was not matched
by the subsequent enzyme APX. We suggest that the excess of H2O2 interacts with lipids to form hydroperoxides which in turn induce and are removed by PHGPX. Ascorbate peroxidase seems to
be a key enzyme in determining salt tolerance in citrus as its constitutive activity in salt-sensitive callus is far below
the activity observed in salt-tolerant callus, while the activities of other enzymes involved in the defence against oxidative
stress, namely SOD, glutathione reductase and PHGPX, are essentially similar.
Received: 10 January 1997 / Accepted: 28 May 1997 相似文献