首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Many Gram-negative bacteria communicate via molecules called autoinducers to coordinate the activities of their populations. Such communication is termed quorum sensing and can regulate pathogenic virulence factor production and antimicrobial resistance. The quorum sensing system of Pseudomonas aeruginosa is currently the most intensively researched, because this bacterium is an opportunistic human pathogen annually responsible for the death of thousands of cystic fibrosis sufferers and many other immunocompromised individuals. Quorum sensing inhibitors can attenuate the pathogenicity of P. aeruginosa. Here we present the crystal structure of the P. aeruginosa LasR ligand-binding domain bound to its autoinducer 3-oxo-C(12)-acylhomoserine lactone. The structure is a symmetrical dimer, with each monomer exhibiting an alpha-beta-alpha fold similar to the TraR and SdiA quorum sensing proteins of Agrobacterium tumefaciens and Escherichia coli. The structure was determined up to 1.8-A resolution and reveals the atomic interactions between LasR and its autoinducer. The monomer structures of LasR, TraR, and SdiA are comparable but display differences in their quaternary organization. Inspection of their binding sites shows some unexpected variations resulting in quite different conformations of their bound autoinducers. We modeled interactions between LasR and various quorum sensing inhibitors, yielding insight into their possible mechanisms of action. The structure also provides a platform for the optimization, or de novo design, of quorum sensing inhibitors.  相似文献   

2.
3.
4.
The GntR family regulators are widely distributed in bacteria and play critical roles in metabolic processes and bacterial pathogenicity. In this study, we describe a GntR family protein encoded by PA4132 that we named MpaR (M vfR-mediated P QS and a nthranilate r egulator) for its regulation of Pseudomonas quinolone signal (PQS) production and anthranilate metabolism in Pseudomonas aeruginosa. The deletion of mpaR increased biofilm formation and reduced pyocyanin production. RNA sequencing analysis revealed that the mRNA levels of antABC encoding enzymes for the synthesis of catechol from anthranilate, a precursor of the PQS, were most affected by mpaR deletion. Data showed that MpaR directly activates the expression of mvfR, a master regulator of pqs system, and subsequently promotes PQS production. Accordingly, deletion of mpaR activates the expression of antABC genes, and thus, increases catechol production. We also demonstrated that MpaR represses the rhl quorum-sensing (QS) system, which has been shown to control antABC activity. These results suggested that MpaR function is integrated into the QS regulatory network. Moreover, mutation of mpaR promotes bacterial survival in a mouse model of acute pneumonia infection. Collectively, this study identified a novel regulator of pqs system, which coordinately controls anthranilate metabolism and bacterial virulence in P. aeruginosa.  相似文献   

5.
Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7‐hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)‐regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI‐opmD multidrug efflux pump and genes involved in the synthesis of QS‐regulated virulence factors including pyocyanin (phz operon), 2‐heptyl‐3‐hydroxy‐4(1H)‐quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole‐related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa.  相似文献   

6.
QscR is a quorum‐sensing (QS) signal receptor that controls expression of virulence genes in the prevalent opportunistic pathogen, Pseudomonas aeruginosa. Unlike the previously reported LuxR‐type QS receptor proteins, that is, LasR and TraR, QscR can be obtained as an apo‐protein that can reversibly form an active complex in vitro with its cognate signal molecule, 3‐oxododecanoyl‐homoserine lactone (3OC12‐HSL), and subsequently bind to target promoter DNA sequences. To search for potential QS inhibitors, an in vitro gel retardation assay was developed using the purified QscR. Both the in vitro assay and the in vivo cell‐based assay using QscR‐overproducing recombinant strains were applied in the screening process. Furanones were chosen for testing the activity as QS inhibitors because they have been reported to strongly inhibit expression of QS‐related genes in Agrobacterium tumefaciens. Among more than a hundred furanones tested, three compounds showed strong and dose‐dependent inhibitory effects on QscR in both assays. One compound in particular, designated as F2, could completely inhibit the 3OC12‐HSL‐dependent QscR activity in vitro at a concentration of 50‐fold molar excess over 3OC12‐HSL. However, with the furanones F3 and F4, which are structurally similar to F2 but with a nitro group instead of the amine moiety, significantly decreased activities were observed. These results suggest that (i) the in vitro assay is a sensitive and reliable tool for screening QS inhibitors, and (ii) furanones are potentially important QS inhibitors for many LuxR‐type receptor proteins. Biotechnol. Bioeng. 2010; 106: 119–126. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
Multidrug efflux pumps are among the main Pseudomonas aeruginosa antibiotic-resistance determinants. Besides, efflux pumps are also involved in other relevant activities of bacterial physiology, including the quorum sensing-mediated regulation of bacterial virulence. Nevertheless, despite the relevance of efflux pumps in bacterial physiology, their interconnection with bacterial metabolism remains obscure. The effect of several metabolites on the expression of P. aeruginosa efflux pumps, and on the virulence and antibiotic resistance of this bacterium, was studied. Phenylethylamine was found to be both inducer and substrate of MexCD-OprJ, an efflux pump involved in P. aeruginosa antibiotic resistance and in extrusion of precursors of quorum-sensing signals. Phenylethylamine did not increase antibiotic resistance; however, the production of the toxin pyocyanin, the tissue-damaging protease LasB and swarming motility were reduced in the presence of this metabolite. This decrease in virulence potential was mediated by a reduction of lasI and pqsABCDE expression, which encode the proteins that synthesise the signalling molecules of two quorum-sensing regulatory pathways. This work sheds light on the interconnection between virulence and antibiotic-resistance determinants, mediated by bacterial metabolism, and points to phenylethylamine as an anti-virulence metabolite to be considered in the study of therapies against P. aeruginosa infections.  相似文献   

8.
9.
Pyoverdine (PvdI) is the major siderophore secreted by Pseudomonas aeruginosa PAOI in order to get access to iron. After being loaded with iron in the extracellular medium, PvdI is transported across the bacterial outer membrane by the transporter, FpvAI. We used the spectral properties of PvdI to show that in addition to Fe3+, this siderophore also chelates, but with lower efficiencies, all the 16 metals used in our screening. Afterwards, FpvAI at the cell surface binds Ag+, Al3+, Cd2+, Co2+, Cu2+, Fe3+, Ga3+, Hg2+, Mn2+, Ni2+ or Zn2+ in complex with PvdI. We used Inductively Coupled Plasma-Atomic Emission Spectrometry to monitor metal uptake in P. aeruginosa : TonB-dependent uptake, in the presence of PvdI, was only efficient for Fe3+. Cu2+, Ga3+, Mn2+ and Ni2+ were also transported into the cell but with lower uptake rates. The presence of Al3+, Cu2+, Ga3+, Mn2+, Ni2+ and Zn2+ in the extracellular medium induced PvdI production in P. aeruginosa . All these data allow a better understanding of the behaviour of the PvdI uptake pathway in the presence of metals other than iron: FpvAI at the cell surface has broad metal specificity at the binding stage and it is highly selective for Fe3+ only during the uptake process.  相似文献   

10.
Tankyrase 1 (TNKS1; a.k.a. ARTD5) and tankyrase 2 (TNKS2; a.k.a ARTD6) are highly homologous poly(ADP‐ribose) polymerases (PARPs) that function in a wide variety of cellular processes including Wnt signaling, Src signaling, Akt signaling, Glut4 vesicle translocation, telomere length regulation, and centriole and spindle pole maturation. Tankyrase proteins include a sterile alpha motif (SAM) domain that undergoes oligomerization in vitro and in vivo. However, the SAM domains of TNKS1 and TNKS2 have not been structurally characterized and the mode of oligomerization is not yet defined. Here we model the SAM domain‐mediated oligomerization of tankyrase. The structural model, supported by mutagenesis and NMR analysis, demonstrates a helical, homotypic head‐to‐tail polymer that facilitates TNKS self‐association. Furthermore, we show that TNKS1 and TNKS2 can form (TNKS1 SAM‐TNKS2 SAM) hetero‐oligomeric structures mediated by their SAM domains. Though wild‐type tankyrase proteins have very low solubility, model‐based mutations of the SAM oligomerization interface residues allowed us to obtain soluble TNKS proteins. These structural insights will be invaluable for the functional and biophysical characterization of TNKS1/2, including the role of TNKS oligomerization in protein poly(ADP‐ribosyl)ation (PARylation) and PARylation‐dependent ubiquitylation.  相似文献   

11.
12.
13.
The capacity of a bacterial pathogen to produce a disease in a treated host depends on the former's virulence and resistance to antibiotics. Several scattered pieces of evidence suggest that these two characteristics can be influenced by bacterial metabolism. This potential relationship is particularly important upon infection of a host, a situation that demands bacteria adapt their physiology to their new environment, making use of newly available nutrients. To explore the potential cross‐talk between bacterial metabolism, antibiotic resistance and virulence, a Pseudomonas aeruginosa model was used. This species is an important opportunistic pathogen intrinsically resistant to many antibiotics. The role of Crc, a global regulator that controls the metabolism of carbon sources and catabolite repression in Pseudomonas, was analysed to determine its contribution to the intrinsic antibiotic resistance and virulence of P. aeruginosa. Using proteomic analyses, high‐throughput metabolic tests and functional assays, the present work shows the virulence and antibiotic resistance of this pathogen to be linked to its physiology, and to be under the control (directly or indirectly) of Crc. A P. aeruginosa strain lacking the Crc regulator showed defects in type III secretion, motility, expression of quorum sensing‐regulated virulence factors, and was less virulent in a Dictyostelium discoideum model. In addition, this mutant strain was more susceptible to beta‐lactams, aminoglycosides, fosfomycin and rifampin. Crc might therefore be a good target in the search for new antibiotics.  相似文献   

14.
Why should organisms cooperate with each other? Helping close relatives that are likely to share the same genes (kin selection) is one important explanation that is likely to apply across taxa. The production of metabolically costly extracellular iron-scavenging molecules (siderophores) by microorganisms is a cooperative behaviour because it benefits nearby conspecifics. We review experiments focusing on the production of the primary siderophore (pyoverdin) of the opportunistic bacterial pathogen, Pseudomonas aeruginosa, which test kin selection theories that seek to explain the evolution of cooperation. First, cooperation is indeed favoured when individuals interact with their close relatives and when there is competition between groups of cooperators and noncooperators, such that the benefit of cooperation can be realized. Second, the relative success of cheats and cooperators is a function of their frequencies within populations. Third, elevated mutation rates can confer a selective disadvantage under conditions when cooperation is beneficial, because high mutation rates reduce how closely bacteria are related to each other. Fourth, cooperative pyoverdin production is also shown to be favoured by kin selection in vivo (caterpillars), and results in more virulent infections. Finally, we briefly outline ongoing and future work using this experimental system.  相似文献   

15.
Low temperatures constrain cellular life due to reductions in nutrient uptake, enzyme kinetics, membrane permeability, and function of other biomacromolecules. This has implications for the biophysical limits of life on Earth, and the plausibility of life in extraterrestrial locations. Although most pseudomonads are mesophilic in nature, isolates such as the Antarctic Pseudomonas syringae Lz4W exhibit considerable psychrotolerance, with an ability to grow even between 4 and 0°C. In this review, we explore the molecular traits and characteristic phenotypes of P. syringae Lz4W that enable life at low temperatures. We describe adaptations that enhance membrane fluidity; examine genes involved in cellular function and survival in the cold; assess capability for energy generation at low temperature; and detail the mechanics of DNA repair and RNA processing at low temperature, and speculate that P. syringae Lz4W can also synthesize glycerol to maintain flexibility of macromolecular systems. In the range 4 to 0ºC, there are considerable changes in the properties and behaviour of water. Specifically, density can have adverse impacts on plasma-membrane functions, cytoplasmic viscosity, protein behaviour, and other essential properties of cellular system. We identified a combination of adaptations that may be peculiar to cold-tolerant P. syringae, including increase of unsaturated fatty acids in the plasma membrane; a RNA polymerase able to function at 0°C; RecBCD- and RuvAB-dependent reestablishment of replication fork; and efficiencies of degradosome machinery and RNA processing by RNaseR at low temperature. Several unresolved questions are discussed in the context of astrobiology, and further work needed on the psychrotolerance of P. syringae.  相似文献   

16.
17.
18.
19.

Background  

Efficient host exploitation by parasites is frequently likely to depend on cooperative behaviour. Under these conditions, mixed-strain infections are predicted to show lower virulence (host mortality) than are single-clone infections, due to competition favouring non-contributing social 'cheats' whose presence will reduce within-host growth. We tested this hypothesis using the cooperative production of iron-scavenging siderophores by the pathogenic bacterium Pseudomonas aeruginosa in an insect host.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号