首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Ethylene is instrumental to climacteric fruit ripening and EIN3 BINDING F‐BOX (EBF) proteins have been assigned a central role in mediating ethylene responses by regulating EIN3/EIL degradation in Arabidopsis. However, the role and mode of action of tomato EBFs in ethylene‐dependent processes like fruit ripening remains unclear. Two novel EBF genes, SlEBF3 and SlEBF4, were identified in the tomato genome, and SlEBF3 displayed a ripening‐associated expression pattern suggesting its potential involvement in controlling ethylene response during fruit ripening. SlEBF3 downregulated tomato lines failed to show obvious ripening‐related phenotypes likely due to functional redundancy among SlEBF family members. By contrast, SlEBF3 overexpression lines exhibited pleiotropic ethylene‐related alterations, including inhibition of fruit ripening, attenuated triple‐response and delayed petal abscission. Yeast‐two‐hybrid system and bimolecular fluorescence complementation approaches indicated that SlEBF3 interacts with all known tomato SlEIL proteins and, consistently, total SlEIL protein levels were decreased in SlEBF3 overexpression fruits, supporting the idea that the reduced ethylene sensitivity and defects in fruit ripening are due to the SlEBF3‐mediated degradation of EIL proteins. Moreover, SlEBF3 expression is regulated by EIL1 via a feedback loop, which supposes its role in tuning ethylene signaling and responses. Overall, the study reveals the role of a novel EBF tomato gene in climacteric ripening, thus providing a new target for modulating fleshy fruit ripening.  相似文献   

4.
High temperatures induced abscission of pepper (Capsicum annuum L. cv. Maor) reproductive organs at various developmental stages. The role of ethylene biosynthesis and auxin economy in high temperature-induced abscission is described. High temperatures somewhat increased ethylene production in the reproductive organs, but the highest temperature treatment, which was the most active in inducing reproductive organ abscission, decreased it. In contrast to ethylene, 1-aminocyclopropane-1-carboxylic acid levels increased significantly in response to high temperatures and correlated positively with the increase in temperature. High temperatures reduced indole-3-acetic acid levels and particularly auxin transport capacity in the reproductive organs. The data suggest that the reduction of auxin transport capacity is the major mechanism by which high temperatures induce reproductive organ abscission in pepper. Received September 27, 1996; accepted March 13, 1997  相似文献   

5.
6.
Plant microRNAs play vital roles in auxin signaling via the negative regulation of auxin response factors (ARFs). Studies have shown that targeting of ARF10/16/17 by miR160 is indispensable for various aspects of development, but its functions in the model crop tomato (Solanum lycopersicum) are unknown. Here we knocked down miR160 (sly–miR160) using a short tandem target mimic (STTM160), and investigated its roles in tomato development. Northern blot analysis showed that miR160 is abundant in developing ovaries. In line with this, its down‐regulation perturbed ovary patterning as indicated by the excessive elongation of the proximal ends of mutant ovaries and thinning of the placenta. Following fertilization, these morphological changes led to formation of elongated, pear‐shaped fruits reminiscent of those of the tomato ovate mutant. In addition, STTM160‐expressing plants displayed abnormal floral organ abscission, and produced leaves, sepals and petals with diminished blades, indicating a requirement for sly–miR160 for these auxin‐mediated processes. We found that sly–miR160 depletion was always associated with the up‐regulation of SlARF10A, SlARF10B and SlARF17, of which the expression of SlARF10A increased the most. Despite the sly–miR160 legitimate site of SlARF16A, its mRNA levels did not change in response to sly–miR160 down‐regulation, suggesting that it may be regulated by a mechanism other than mRNA cleavage. SlARF10A and SlARF17 were previously suggested to function as inhibiting ARFs. We propose that by adjusting the expression of a group of ARF repressors, of which SlARF10A is a primary target, sly–miR160 regulates auxin‐mediated ovary patterning as well as floral organ abscission and lateral organ lamina outgrowth.  相似文献   

7.
Summary Abscission in the leaf rachis of Sambucus nigra L. is preceded by a positional differentiation of zone cells that enlarge and separate in response to ethylene but not to auxin. These cells are absent from youngest leaves, and such leaves do not abscind even in ethylene; other cells of the immature rachii will enlarge in response to auxin. These two classes of target cells are always recognisable by their opposing responses to auxin and ethylene. Prior to separation zone cells exposed to ethylene show considerable activation of the cytoplasm, many polysomes, elongate endoplasmic reticulum and highly dilated dictyosomes with many associated vesicles. Treatment with auxin precludes these changes, and abscission is always retarded: high levels of ethylene must be added to overcome the auxin inhibition. The differentiation of zone cells and their ethylene-stimulated growth and activation are prerequisites for rachis abscission in Sambucus. Such cell development may be of general occurrence prior to organ abscission in plants.Abbreviation IAA indole-3yl-acetic acid  相似文献   

8.
9.
10.
The hexavalent form of chromium [Cr(VI)] causes a major reduction in yield and quality of crops worldwide. The root is the first plant organ that interacts with Cr(VI) toxicity, which inhibits primary root elongation, but the underlying mechanisms of this inhibition remain elusive. In this study, we investigate the possibility that Cr(VI) reduces primary root growth of Arabidopsis by modulating the cell cycle‐related genes and that ethylene signalling contributes to this process. We show that Cr(VI)‐mediated inhibition of primary root elongation was alleviated by the ethylene perception and biosynthesis antagonists silver and cobalt, respectively. Furthermore, the ethylene signalling defective mutants (ein2‐1 and etr1‐3) were insensitive, whereas the overproducer mutant (eto1‐1) was hypersensitive to Cr(VI). We also report that high levels of Cr(VI) significantly induce the distribution and accumulation of auxin in the primary root tips, but this increase was significantly suppressed in seedlings exposed to silver or cobalt. In addition, genetic and physiological investigations show that AUXIN‐RESISTANT1 (AUX1) participates in Cr(VI)‐induced inhibition of primary root growth. Taken together, our results indicate that ethylene mediates Cr(VI)‐induced inhibition of primary root elongation by increasing auxin accumulation and polar transport by stimulating the expression of AUX1.  相似文献   

11.
In multicellular organisms, the balance between cell division and differentiation determines organ size, and represents a central unknown in developmental biology. In Arabidopsis roots, this balance is mediated between cytokinin and auxin through a regulatory circuit converging on the IAA3/SHORT HYPOCOTYL 2 (SHY2) gene. Here, we show that crosstalk between brassinosteroids (BRs) and auxin occurs in the vascular transition zone to promote root meristem development. We found that BR increases root meristem size by up‐regulating expression of the PINFORMED 7 (PIN7) gene and down‐regulating expression of the SHY2 gene. In addition, BES1 could directly bind to the promoter regions of both PIN7 and SHY2, indicating that PIN7 and SHY2 mediate the BR‐induced growth of the root meristem by serving as direct targets of BES1. Moreover, the PIN7 overexpression and loss‐of‐function SHY2 mutant were sensitive to the effects of BR and could partially suppress the short‐root phenotypes associated with deficient BR signaling. Interestingly, BRs could inhibit the accumulation of SHY2 protein in response to cytokinin. Taken together, these findings suggest that a complex equilibrium model exists in which regulatory interactions among BRs, auxin, and cytokinin regulate optimal root growth.  相似文献   

12.
Abscission facilitates growth and reproduction and improves plant defenses against pathogens. This tightly regulated process is triggered by environmental cues and hormones such as ethylene and auxin. Because auxin is crucial for abscission, auxin response factors (ARFs) may play important roles in this process. Here, we examined changes in gene expression during abscission in tomato, focusing on regulation of genes encoding ARFs. Specifically, we analyzed the pattern of ARF gene expression in tomato flower pedicel explants treated with ethylene, the ethylene blocker 1-methylcyclopropene (1-MCP), or auxin to determine how auxin and ethylene affect ARF gene expression. In addition, we examined the spatial and temporal distribution of IAA during abscission by examining transgenic tomato plants expressing an IAA-inducible promoter fused to the GUS reporter gene (the P5::GUS ‘Chico III’ line). Flower removal from the explants quickly induced abscission by ethylene, which was inhibited by exogenous auxin or 1-MCP. During early abscission, auxin (or 1-MCP) regulated the expression of various ARFs, including ARF1, 2, 3, 4, 5, 7, 8-1, 9, 11, 12, 13, 13-1, 14, and 17, whereas ethylene had the opposite effect on most of these genes. Further analysis shows that during this stage, auxin may mediate the expression of ARF8-1, 9, 11, 12, 13, 13-1, and 14, whereas ethylene may mediate ARF13-1. During the later stage of abscission, ARF2, 8, 10, 11, and 19 were upregulated, and 8-1, 12, 13, and 13-1 were downregulated, compared with nonabscising parts of plants. Fluorometric GUS analysis indicated that GUS activity in the abscission zone remained stable at 4 h and sharply decreased after 8 h until abscission was complete (32 h).  相似文献   

13.
Fruit crops are subject to precocious fruit abscission, during which the phytohormone ethylene (ET) acts as a major positive regulator. However, the molecular basis of ET‐induced fruit abscission remains poorly understood. Here, we show that two ETHYLENE INSENSITIVE 3‐like (EIL) homologs in litchi, LcEIL2 and LcEIL3, play a role in ET‐activated fruitlet abscission. LcEIL2/3 were significantly upregulated in the fruit abscission zone (AZ) during the ET‐induced fruitlet abscission in litchi. The presence of LcEIL2/3 in wild‐type Arabidopsis and ein3 eil1 mutants can accelerate the floral organ abscission. Moreover, the electrophoretic mobility shift assay and dual luciferase reporter analysis illustrated that LcEIL2/3 directly interacted with the gene promoters to activate the expression of cell wall remodeling genes LcCEL2/8 and LcPG1/2, and ET biosynthetic genes LcACS1/4/7 and LcACO2/3. Furthermore, we showed that LcPG1/2 were expressed in the floral abscission zone of Arabidopsis, and constitutive expression of LcPG2 in Arabidopsis promoted the floral organ abscission. In conclusion, we propose that LcEIL2/3 are involved in ET‐induced fruitlet abscission via controlling expression of genes related to ET biosynthesis and cell wall remodeling in litchi.  相似文献   

14.
Environmental inputs such as stress can modulate plant cell metabolism, but the detailed mechanism remains unclear. We report here that FERONIA (FER), a plasma membrane receptor‐like kinase, may negatively regulate the S‐adenosylmethionine (SAM) synthesis by interacting with two S‐adenosylmethionine synthases (SAM1 and SAM2). SAM participates in ethylene, nicotianamine and polyamine biosynthetic pathways and provides the methyl group for protein and DNA methylation reactions. The Arabidopsis fer mutants contained a higher level of SAM and ethylene in plant tissues and displayed a dwarf phenotype. Such phenotype in the fer mutants was mimicked by over‐expressing the S‐adenosylmethionine synthetase in transgenic plants, whereas sam1/2 double mutant showed an opposite phenotype. We propose that FER receptor kinase, in response to environmental stress and plant hormones such as auxin and BR, interacts with SAM synthases and down‐regulates ethylene biosynthesis.  相似文献   

15.
16.
17.
Burdon  J. N.; Sexton  R. 《Annals of botany》1993,72(4):289-294
The time-course of flower development of Rubus idaeus L. cv.Glen Clova was studied on detached buds opened in the laboratory.After sepal and petal opening petal abscission occurred withthe petals from an individual flower being shed over 3-4 h.Abscission was accompanied by a peak in ethylene production.Treatment of flowers with aminoethoxyvinylglycine eliminatedthe peak in ethylene production but did not prevent petal abscission.However, petal loss was much slower, taking place over a periodof days rather than hours. Abscission was more effectively retardedby silver thiosulphate. Exogenous ethylene accelerated the rateof petal abscission and senescence. The increase in ethyleneproduction coincident with petal abscission appears to accelerateand co-ordinate the shedding of the separate petals on an individualflower. If ethylene is important in the induction of abscissionit would appear that the low rate of production sustained inthe presence of aminoethoxyvinylglycine must be sufficient.Copyright1993, 1999 Academic Press Rubus idaeus L., raspberry, flower, petal, abscission, ethylene  相似文献   

18.
Development of adventitious roots (ARs) at the base of the shoot is an important adaptation of plants to waterlogging stress; however, its physiological mechanisms remain unclear. Here, we investigated the regulation of AR formation under waterlogged conditions by hormones and reactive oxygen species (ROS) in Cucumis sativus L., an agriculturally and economically important crop in China. We found that ethylene, auxin, and ROS accumulated in the waterlogged cucumber plants. On the other hand, application of the ethylene receptor inhibitor 1‐methylcyclopropene (1‐MCP), the auxin transport inhibitor 1‐naphthylphthalamic acid (NPA), or the NADPH oxidase inhibitor diphenyleneiodonium (DPI) decreased the number of ARs induced by waterlogging. Auxin enhanced the expression of ethylene biosynthesis genes, which led to ethylene entrapment in waterlogged plants. Both ethylene and auxin induced the generation of ROS. Auxin‐induced AR formation was inhibited by 1‐MCP, although ethylene‐induced AR formation was not inhibited by NPA. Both ethylene‐ and auxin‐induced AR formation were counteracted by DPI. These results indicate that auxin‐induced AR formation is dependent on ethylene, whereas ethylene‐induced AR formation is independent of auxin. They also show that ROS signals mediate both ethylene‐ and auxin‐induced AR formation in cucumber plants.  相似文献   

19.
Through a sensitized screen for novel components of pathways regulating organ separation in Arabidopsis flowers, we have found that the leucine‐rich repeat receptor‐like kinase SOMATIC EMBRYOGENESIS RECEPTOR‐LIKE KINASE1 (SERK1) acts as a negative regulator of abscission. Mutations in SERK1 dominantly rescue abscission in flowers without functional NEVERSHED (NEV), an ADP‐ribosylation factor GTPase‐activating protein required for floral organ shedding. We previously reported that the organization of the Golgi apparatus and location of the trans‐Golgi network (TGN) are altered in nev mutant flowers. Disruption of SERK1 restores Golgi structure and the close association of the TGN in nev flowers, suggesting that defects in these organelles may be responsible for the block in abscission. We have also found that the abscission zones of nev serk1 flowers are enlarged compared to wild‐type. A similar phenotype was previously observed in plants constitutively expressing a putative ligand required for organ separation, INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), suggesting that signalling through IDA and its proposed receptors, HAESA and HAESA‐LIKE2, may be deregulated in nev serk1 abscission zone cells. Our studies indicate that in addition to its previously characterized roles in stamen development and brassinosteroid perception, SERK1 plays a unique role in modulating the loss of cell adhesion that occurs during organ abscission.  相似文献   

20.
Abstract The relationship between ethylene-induced leaf abscission and ethylene-induced inhibition of auxin transport in midrib sections of the leaf blade of Citrus sinensis L. Osbeck, Populus deltoides Bart, and Eucalyptus camaldulensis Dehn. was studied. These species differed greatly in their abscission response to ethylene. The kinetic trend of abscission resembled that of the inhibition of auxin transport in all three species. It is suggested that one of the main actions of ethylene in the leaf blade is to inhibit auxin transport in the veinal tissues, thus reducing the amount of auxin transported from the leaf blade to the abscission zone. Ethylene inhibited transport of both IAA (indole-3-acetic acid) and NAA (α-naphthaleneacetic acid) in the midrib sections. However, while ethylene enhanced the conjugation of IAA with aspartic acid and glucose in the apical (absorbing) segment of the midrib sections, it had little effect on the conjugation of NAA. The data indicate that auxin destruction through conjugation does not play a major role in the inhibition of auxin transport by ethylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号