首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the extent to which phylogenetic constraints and adaptive evolutionary forces help define the physiological sensitivity of species is critical for anticipating climate‐related impacts in aquatic environments. Yet, whether upper thermal tolerance and plasticity are shaped by common evolutionary and environmental mechanisms remains to be tested. Based on a systematic literature review, we investigated this question in 82 freshwater fish species (27 families) representing 829 experiments for which data existed on upper thermal limits and it was possible to estimate plasticity using upper thermal tolerance reaction norms. Our findings indicated that there are strong phylogenetic signals in both thermal tolerances and acclimation capacity, although it is weaker in the latter. We found that upper thermal tolerances are correlated with the temperatures experienced by species across their range, likely because of spatially autocorrelated processes in which closely related species share similar selection pressures and limited dispersal from ancestral environments. No association with species thermal habitat was found for acclimation capacity. Instead, species with the lowest physiological plasticity also displayed the highest thermal tolerances, reflecting to some extent an evolutionary trade‐off between these two traits. Although our study demonstrates that macroecological climatic niche features measured from species distributions are likely to provide a good approximation of freshwater fish sensitivity to climate change, disentangling the mechanisms underlying both acute and chronic heat tolerances may help to refine predictions regarding climate change‐related range shifts and extinctions.  相似文献   

2.
Given the magnitude and rate of ongoing climate change, the physiological capacity of species to tolerate extreme conditions will play a key role in influencing outcomes for biodiversity. It is also possible that species will respond to changes in climate by shifting their physiological tolerances, through genetic adaptation. How these processes influence biodiversity outcomes will be crucial in determining the most suitable management responses to retain diversity into the future. Here we assess how accounting for physiological tolerances, genetic adaptation and community assembly processes such as species replacement, influence projected climate change outcomes for the flora of Tasmania (all 2051 plant species). We incorporate these processes into the M‐SET metacommunity model and compare four different assumptions of species niches: realized niches, broader physiological tolerances and low or high capacity for genetic adaptation. Accounting for physiological tolerances rather than realized niches had the largest impact on projected outcomes, with 358 fewer species extinctions in the hottest climate scenario (mean = 30 extinctions). In contrast, adding the capacity for species physiological tolerances to shift through genetic adaptation resulted in little additional benefits for biodiversity outcomes, even under an optimistic level of adaptive capacity. We find that this is due largely to community assembly processes such as species replacement restricting the ability of species to persist and adapt in situ, as has been suggested from theoretical metacommunity models applied in simple artificial settings. Our results highlight the importance of accounting for species physiological tolerances and community‐level processes in biodiversity projections, while the potential role for genetic adaptation may be small, requiring further exploration in alternative contexts.  相似文献   

3.
Human activities often replace native forests with warmer, modified habitats that represent novel thermal environments for biodiversity. Reducing biodiversity loss hinges upon identifying which species are most sensitive to the environmental conditions that result from habitat modification. Drawing on case studies and a meta‐analysis, we examined whether observed and modelled thermal traits, including heat tolerances, variation in body temperatures, and evaporative water loss, explained variation in sensitivity of ectotherms to habitat modification. Low heat tolerances of lizards and amphibians and high evaporative water loss of amphibians were associated with increased sensitivity to habitat modification, often explaining more variation than non‐thermal traits. Heat tolerances alone explained 24–66% (mean = 38%) of the variation in species responses, and these trends were largely consistent across geographic locations and spatial scales. As habitat modification alters local microclimates, the thermal biology of species will likely play a key role in the reassembly of terrestrial communities.  相似文献   

4.
Climatic changes result in an increased in mean temperature and in a higher incidence of extreme weather events such as heat and cold waves. For ectotherms, such as insect parasitoids, the ability to remain active under extreme climatic conditions is a significant key to fitness. The body size of individuals, and in particular their surface to volume ratio, may play a role in their resistance to thermal conditions. The thermal tolerances are investigated of two closely‐related sympatric parasitoid species [Aphidius avenae Haliday and Aphidius rhopalosiphi De Stefani‐Perez (Hymenoptera: Aphidiinae)] that have a similar ecology but differ in body size and phenologies. The critical thermal limits of individuals are assessed in both sexes of each parasitoid species and the influence of surface–volume ratios on their thermal tolerances. Aphidius avenae is less resistant to low temperatures and more resistant to high temperatures than A. rhopalosiphi. The lower surface to volume ratio of A. avenae individuals may help them to remain active in summer when experiencing heat waves. However, body size is not the sole factor that plays a role in differences of thermal tolerance between species and body size may not be an adaptation to extreme temperatures but rather a by‐product of developmental regulation. Closely‐related sympatric species from the same ecological guild can have different thermal tolerances that may allow them to occur within the same habitat. The present study also highlights the importance of clearly defining how to measure critical thermal limits to determine the thermal tolerance of a species.  相似文献   

5.
We determine and summarize the thermal responses for 118 species and subspecies of North American cicadas representing more than 50 years of fieldwork and experimentation. We investigate the role that habitat and behavior have on the thermal adaptation of the North American cicadas. There are general patterns of increasing thermal responses in warmer floristic provinces and increasing maximum potential temperature within a habitat. Altitude shows an inverse relationship with thermal responses. Comparison of thermal responses of species emerging early or late in the season within the same habitat show increases in the thermal responses along with the increasing environmental temperatures late in the summer. However, behavior, specifically the use of endothermy as a thermoregulatory strategy, can influence the values determined in a particular habitat. Subspecies generally do not differ in their thermal tolerances and thermal tolerances are consistent within a species over distances of more than 7600 km.  相似文献   

6.
The geographic ranges of closely related species can vary dramatically, yet we do not fully grasp the mechanisms underlying such variation. The niche breadth hypothesis posits that species that have evolved broad environmental tolerances can achieve larger geographic ranges than species with narrow environmental tolerances. In turn, plasticity and genetic variation in ecologically important traits and adaptation to environmentally variable areas can facilitate the evolution of broad environmental tolerance. We used five pairs of western North American monkeyflowers to experimentally test these ideas by quantifying performance across eight temperature regimes. In four species pairs, species with broader thermal tolerances had larger geographic ranges, supporting the niche breadth hypothesis. As predicted, species with broader thermal tolerances also had more within‐population genetic variation in thermal reaction norms and experienced greater thermal variation across their geographic ranges than species with narrow thermal tolerances. Species with narrow thermal tolerance may be particularly vulnerable to changing climatic conditions due to lack of plasticity and insufficient genetic variation to respond to novel selection pressures. Conversely, species experiencing high variation in temperature across their ranges may be buffered against extinction due to climatic changes because they have evolved tolerance to a broad range of temperatures.  相似文献   

7.
The latitudinal gradient in species diversity is a central problem in ecology. Expeditions covering approximately 16°54' of longitude and 21°4' of latitude and eight Argentine phytogeographic regions provided thermal adaptation data for 64 species of cicadas. We test whether species diversity relates to the diversity of thermal environments within a habitat. There are general patterns of the thermal response values decreasing in cooler floristic provinces and decreasing maximum potential temperature within a habitat except in tropical forest ecosystems. Vertical stratification of the plant communities leads to stratification in species using specific layers of the habitat. There is a decrease in thermal tolerances in species from the understory communities in comparison to middle level or canopy fauna. The understory Herrera umbraphila Sanborn & Heath is the first diurnally active cicada identified as a thermoconforming species. The body temperature for activity in H. umbraphila is less than and significantly different from active body temperatures of all other studied species regardless of habitat affiliation. These data suggest that variability in thermal niches within the heterogeneous plant community of the tropical forest environments permits species diversification as species adapt their physiology to function more efficiently at temperatures different from their potential competitors.  相似文献   

8.
The relationships among species'' physiological capacities and the geographical variation of ambient climate are of key importance to understanding the distribution of life on the Earth. Furthermore, predictions of how species will respond to climate change will profit from the explicit consideration of their physiological tolerances. The climatic variability hypothesis, which predicts that climatic tolerances are broader in more variable climates, provides an analytical framework for studying these relationships between physiology and biogeography. However, direct empirical support for the hypothesis is mostly lacking for endotherms, and few studies have tried to integrate physiological data into assessments of species'' climatic vulnerability at the global scale. Here, we test the climatic variability hypothesis for endotherms, with a comprehensive dataset on thermal tolerances derived from physiological experiments, and use these data to assess the vulnerability of species to projected climate change. We find the expected relationship between thermal tolerance and ambient climatic variability in birds, but not in mammals—a contrast possibly resulting from different adaptation strategies to ambient climate via behaviour, morphology or physiology. We show that currently most of the species are experiencing ambient temperatures well within their tolerance limits and that in the future many species may be able to tolerate projected temperature increases across significant proportions of their distributions. However, our findings also underline the high vulnerability of tropical regions to changes in temperature and other threats of anthropogenic global changes. Our study demonstrates that a better understanding of the interplay among species'' physiology and the geography of climate change will advance assessments of species'' vulnerability to climate change.  相似文献   

9.
Aim Within clades, most taxa are rare, whilst few are common, a general pattern for which the causes remain poorly understood. Here we investigate the relationship between thermal performance (tolerance and acclimation ability) and the size of a species’ geographical range for an assemblage of four ecologically similar European diving beetles (the Agabus brunneus group) to examine whether thermal physiology relates to latitudinal range extent, and whether Brown’s hypothesis and the environmental variability hypothesis apply to these taxa. Location Europe. Methods In order to determine the species tolerances to either low or high temperatures we measured the lethal thermal limits of adults, previously acclimated at one of two temperatures, by means of thermal ramping experiments (± 1°C min?1). These measures of upper and lower thermal tolerances (UTT and LTT respectively) were then used to estimate each species’ thermal tolerance range, as total thermal tolerance polygons and marginal UTT and LTT thermal polygons. Results Overall, widespread species have higher UTTs and lower LTTs than restricted ones. Mean upper lethal limits of the Agabus brunneus group (43 to 46°C), are similar to those of insects living at similar latitudes, whilst mean lower lethal limits (?6 to ?9°C) are relatively high, suggesting that this group is not particularly cold‐hardy compared with other mid‐temperate‐latitude insects. Widespread species possess the largest thermal tolerance ranges and have a relatively symmetrical tolerance to both high and low temperatures, when compared with range‐restricted relatives. Over the temperature range employed, adults did not acclimate to either high or low temperatures, contrasting with many insect groups, and suggesting that physiological plasticity has a limited role in shaping distribution. Main conclusions Absolute thermal niche appears to be a good predictor of latitudinal range, supporting both Brown’s hypothesis and the environmental variability hypothesis. Restricted‐range species may be more susceptible to the direct effect of climate change than widespread species, notwithstanding the possibility that even ‘thermally‐hardy’, widespread species may be influenced by the indirect effects of climate change such as reduction in habitat availability in Mediterranean areas.  相似文献   

10.
Salinity interacts with many physiological functions and therefore probably influences the distribution of terrestrial fauna in tidal flooded salt marshes. The present study tests the hypothesis that the physiological tolerance of stenotopic wolf spiders for saline conditions at least partially determines their occurrence throughout salt‐marsh and nonsaline habitats. The duration of survival of three stenotopic wolf spider species (Araneae: Lycosidae) with different habitat preferences is compared in a controlled laboratory experiment. The forest‐dwelling Pardosa saltans, the salt‐marsh resident Pardosa purbeckensis and its sister species the inland‐living Pardosa agrestis are exposed to experimental conditions with different levels of salinity. Individuals (45 males and 20–45 females per treatment) are placed in individual air‐tight boxes filled with water‐saturated sand. Three levels of salinity are tested: nonsaline (0‰), medium saline (33–35‰) and highly saline (66–70‰). Contents of carbon, hydrogen and nitrogen and the molar ration carbon/nitrogen remain constant over time and do not differ among salinity treatments, indicating that starvation effects on survival, if any, are similar for all treatments. Conversely, body water significantly decreases over time and differs among salinity treatments, in accordance with patterns of survival. Conforming to their habitat preference, the survival of P. saltans and P. agrestis decreases quickly under highly saline conditions. Pardosa purbeckensis, however, has a high survival under both saline and nonsaline conditions. The duration of survival of females is significantly lower than that of males of P. saltans and P. purbeckensis. Durations of survival of ground‐living wolf spiders exposed to salinity partly match their habitat distribution but do not explain the restriction of salt‐marsh species to saline habitats.  相似文献   

11.
Pulgar JM  Bozinovic F  Ojeda FP 《Oecologia》2005,142(4):511-520
Geographic variability in the physiological attributes of widely distributed species can be a result of phenotypic plasticity or can reflect evolutionary responses to a particular habitat. In the field, we assessed thermal variability in low and high intertidal pools and the distribution of resident fish species Scartichthys viridis and transitory Girella laevifrons along this vertical intertidal gradient at three localities along the Chilean coast: Antofagasta (the northernmost and warmest habitat), Carrizal Bajo (central coast) and Las Cruces (the southernmost and coldest habitat). In the laboratory, we evaluated the thermal sensitivity of fish captured from each locality. The response to temperature was estimated as the frequency of opercular movements and as thermal selectivity in a gradient; the former being a indirect indicator of energy costs in a particular environment and the latter revealing differential occupation of habitat. Seawater temperature in intertidal pools was greatest at Antofagasta, and within each site was greatest in high intertidal pools. The two intertidal fish species showed opposite patterns of local distribution, with S. viridis primarily inhabiting the lower sectors of the intertidal zone, and G. laevifrons occupying the higher sectors of the intertidal zone. This pattern was consistent for all three localities. Locality was found to be a very important factor determining the frequency of opercular movement and thermal selectivity of both S. viridis and G. laevifrons. Our results suggest that S. viridis and G. laevifrons respond according to: (1) the thermal history of the habitat from which they came, and (2) the immediate physical conditions of their habitat. These results suggest local adaptation rather than plasticity in thermoregulatory and energetic mechanisms.  相似文献   

12.
Aim To identify the most important environmental drivers of benthic macroinvertebrate assemblages in boreal springs at different spatial scales, and to assess how well benthic assemblages correspond to terrestrially derived ecoregions. Location Finland. Methods Benthic invertebrates were sampled from 153 springs across four boreal ecoregions of Finland, and these data were used to analyse patterns in assemblage variation in relation to environmental factors. Species data were classified using hierarchical divisive clustering (twinspan ) and ordinated using non‐metric multidimensional scaling. The prediction success of the species and environmental data into a priori (ecoregions) and a posteriori (twinspan ) groups was compared using discriminant function analysis. Indicator species analysis was used to identify indicator taxa for both a priori and a posteriori assemblage types. Results The main patterns in assemblage clusters were related to large‐scale geographical variation in temperature. A secondary gradient in species data reflected variation in local habitat structure, particularly abundance of minerogenic spring brooks. Water chemistry variables were only weakly related to assemblage variation. Several indicator species representing southern faunistic elements in boreal springs were identified. Discriminant function analysis showed poorer success in classifying sites into ecoregions based on environmental than on species data. Similarly, when classifying springs into the twinspan groups, classification based on species data vastly outperformed that based on environmental data. Main conclusions A latitudinal zonation pattern of spring assemblages driven by regional thermal conditions is documented, closely paralleling corresponding latitudinal patterns in both terrestrial and freshwater assemblages in Fennoscandia. The importance of local‐scale environmental variables increased with decreasing spatial extent. Ecoregions provide an initial stratification scheme for the bioassessment of benthic macroinvertebrates of North European springs. Our results imply that climate warming, landscape disturbance and degradation of spring habitat pose serious threats to spring biodiversity in northern Europe, especially to its already threatened southern faunistic elements.  相似文献   

13.
Species richness in freshwater bony fishes depends on two main processes: the transition into and the diversification within freshwater habitats. In contrast to bony fishes, only few cartilaginous fishes, mostly stingrays (Myliobatoidei), were able to colonize fresh water. Respective transition processes have been mainly assessed from a physiological and morphological perspective, indicating that the freshwater lifestyle is strongly limited by the ability to perform osmoregulatory adaptations. However, the transition history and the effect of physiological constraints on the diversification in stingrays remain poorly understood. Herein, we estimated the geographic pathways of freshwater colonization and inferred the mode of habitat transitions. Further, we assessed habitat‐related speciation rates in a time‐calibrated phylogenetic framework to understand factors driving the transition of stingrays into and the diversification within fresh water. Using South American and Southeast Asian freshwater taxa as model organisms, we found one independent freshwater colonization event by stingrays in South America and at least three in Southeast Asia. We revealed that vicariant processes most likely caused freshwater transition during the time of major marine incursions. The habitat transition rates indicate that brackish water species switch preferably back into marine than forth into freshwater habitats. Moreover, our results showed significantly lower diversification rates in brackish water lineages, whereas freshwater and marine lineages exhibit similar rates. Thus, brackish water habitats may have functioned as evolutionary bottlenecks for the colonization of fresh water by stingrays, probably because of the higher variability of environmental conditions in brackish water.  相似文献   

14.
Many predictions of how climate change will impact biodiversity have focused on range shifts using species‐wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life‐history plasticity vs. local adaptation to species‐wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species’ range—not only those at the trailing range edge—could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species’ latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade‐off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species’ ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest potential impacts of climate change on species’ abundance and distribution.  相似文献   

15.
Understanding how and why species respond to land‐use change is one of the central challenges in conservation biology, yet the causes of variation in the responses of species to land‐use change remain unclear. We tested whether adaptation to different abiotic environments influenced the vulnerability of bird communities to agricultural expansion in the Himalayan mountain range, which exhibits a strong east–west gradient in annual temperature variation. We did so by surveying bird communities in forest and agriculture at opposite ends of that gradient. We contrasted metrics of species richness, diversity, community composition and forest dependency across land‐use types and regions, and tested whether species’ thermal sensitivity influenced their response to the replacement of forest with agriculture. Agricultural land in the relatively aseasonal east harboured significantly fewer bird species than did forests, a pattern that is starkly reversed in the highly seasonal west. For species common to both regions, eastern populations used forest ~35% more than did western populations. While western species were less constrained by temperature than eastern species, western species with narrow thermal tolerances were also more forest dependent. Selection across a stark environmental gradient on a common species pool appears to have altered the vulnerability of Himalayan birds to forest loss, with communities in the relatively aseasonal east much more sensitive to forest conversion than those in the west. Adaptation to local environmental conditions appears to mediate species’ responses to land use change, with thermal specialists more vulnerable to forest loss than species with greater thermal tolerances. Species’ responses to global change may differ predictably along abiotic gradients even within a single region or biodiversity hotspot, and such variation must be addressed in conservation planning.  相似文献   

16.
Physiological variation among and within species is thought to play a key role in determining distribution patterns across environmental gradients. We tested inter‐ and intraspecific variation in cold and heat tolerances for three grasshopper species (genus Kosciuscola) with overlapping elevation distributions, across their respective ranges in the Australian mountains. Of the three cold tolerance traits measured, the critical thermal minimum was the only trait to vary among species, with greater cold tolerance associated with a distribution extending to a higher elevation. Cold tolerance limits were regularly exceeded in exposed microhabitats, suggesting a role for cold adaptation in structuring species distribution patterns. In contrast to cold tolerance, heat tolerance variation was primarily partitioned within species. For two species, populations from treeless alpine habitat were more heat tolerant than their lower‐elevation counterparts, supporting recent models that suggest greater exposure to temperature extremes at higher elevations. These contrasting patterns of physiological variation among and within species emphasise the importance of considering variation within species when attempting to understand how species distributions are affected by thermal extremes.  相似文献   

17.
Habitat specialists are considered to be more sensitive to anthropogenic disturbance than habitat generalists. However, a number of studies have shown that habitat specialists can be tolerant to or even benefit from environmental degradation, suggesting that the effect of disturbance on distributions and abundances of habitat generalists and specialists can be unpredictable. In this study, we assessed the effects of anthropogenic disturbance on the degree of specialization of stream macroinvertebrates in boreal streams. We first measured the niche width for each macroinvertebrate species using the Outlying Mean Index (OMI) analysis and then, using independent data sets of near-pristine and anthropogenically altered streams, we examined the effects of human disturbances on stream macroinvertebrates with different tolerances to environmental conditions. As expected, human disturbance significantly decreased the level of the specialization in stream macroinvertebrate assemblages, and taxa with narrow environmental tolerances were more sensitive to disturbance than taxa with wide tolerances. Despite being more sensitive to disturbance, taxa with narrow environmental tolerances were locally more abundant than tolerant taxa in near-pristine streams, indicating their better performance in their optimal environments. However, many tolerant taxa decreased in their occurrence in disturbed streams, suggesting that habitat generalists also tend to negatively respond to disturbance. Species-rich assemblages harboured more taxa with narrow tolerances compared with species poor assemblages, suggesting a high conservation value of streams with diverse macroinvertebrate assemblages. Consistent with findings for many biological groups, our results indicate that macroinvertebrate species specialised in certain habitats are more sensitive to environmental degradation than habitat generalists. However, contrary to many previous studies, our results suggest that only a few species are likely to benefit from anthropogenic disturbance and, therefore, environmental degradation does not necessary result in macroinvertebrate assemblages composed of a few tolerant taxa.  相似文献   

18.
Spiders constitute a major arthropod group in regularly inundated habitats. Some species survive a flooding period under water. We compared survival during both submersion and a recovery period after submersion, in three stenotopic lycosids: two salt-marsh species Arctosa fulvolineata and Pardosa purbeckensis, and a forest spider Pardosa lugubris. Both activity and survival rates were determined under controlled laboratory conditions by individually surveying 120 females kept submerged in sea water. We found significant differences between the three species, with the two salt-marsh spiders exhibiting higher survival abilities. To our knowledge, this study reports for the first time the existence of a hypoxic coma caused by submersion, which is most pronounced in A. fulvolineata, the salt-marsh spider known to overcome tidal inundation under water. Its ability to fall into that coma can therefore be considered a physiological adaptation to its regularly inundated habitat.  相似文献   

19.
The natural distributions of freshwater fish species are limited by their thermal tolerances via physiological constraints and increased interspecific competition as temperatures shift toward the thermal optima of other syntopic species. Species may mediate stress from temperature change physiologically, behaviorally, or both; but these changes may compromise competitive advantages through effects on feeding and social behavior. In the Appalachian Mountains of North America, creek chub (Semotilus atromaculatus) are found in warm‐water and cold‐water streams and overlap in range with brook trout (Salvelinus fontinalis) across lower thermal maxima, where they compete for food and space. As stream temperatures continue to increase due to climate change, brook trout are under increasing thermal stress which may negatively affect their ability to compete with creek chub. To examine the influences of temperature on competitive interactions between these species, we observed feeding behavior, aggression, and habitat use differences at three temperatures approaching brook trout thermal maxima (18°C, 20°C, and 22°C) among dyad pairs for all combinations of species in experimental flow‐through tanks. We also examined feeding and habitat use of both species under solitary conditions. We found as temperature increased, feeding and aggression of brook trout were significantly reduced in the presence of creek chub. Creek chub pairs were more likely to occupy benthic areas and refugia while brook trout pairs used surface water more. Space use patterns significantly changed by pairing treatment. Aggression and space use shifts allowed increased exploitative and interference competition from creek chub when paired with brook trout that was not present in conspecific pairs. The decreased dominance of a top predator may lead to diverse impacts on stream community dynamics with implications for the future range restriction of brook trout and demonstrate possible mechanisms to facilitate competitive advantages of warm water generalist species under thermal stress.  相似文献   

20.
S. Perea  I. Doadrio 《Molecular ecology》2015,24(14):3706-3722
The Mediterranean freshwater fish fauna has evolved under constraints imposed by the seasonal weather/hydrological patterns that define the Mediterranean climate. These conditions have influenced the genetic and demographic structure of aquatic communities since their origins in the Mid‐Pliocene. Freshwater species in Mediterranean‐type climates will likely constitute genetically well‐differentiated populations, to varying extents depending on basin size, as a consequence of fragmentation resulting from drought/flood cycles. We developed an integrative framework to study the spatial patterns in genetic diversity, demographic trends, habitat suitability modelling and landscape genetics, to evaluate the evolutionary response of Mediterranean‐type freshwater fish to seasonal fluctuations in weather. To test this evolutionary response, the model species used was Squalius valentinus, an endemic cyprinid of the Spanish Levantine area, where seasonal weather fluctuations are extreme, although our findings may be extrapolated to other Mediterranean‐type species. Our results underscore the significant role of the Mediterranean climate, along with Pleistocene glaciations, in diversification of S. valentinus. We found higher nuclear diversity in larger drainage basins, but higher mitochondrial diversity correlated to habitat suitability rather than basin size. We also found strong correlation between genetic structure and climatic factors associated with Mediterranean seasonality. Demographic and migration analyses suggested population expansion during glacial periods that also contributed to the current genetic structure of S. valentinus populations. The inferred models support the significant contribution of precipitation and temperature to S. valentinus habitat suitability and allow recognizing areas of habitat stability. We highlight the importance of stable habitat conditions, fostered by typical karstic springs found on the Mediterranean littoral coasts, for the preservation of freshwater species inhabiting seasonally fluctuating river systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号