首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The restoration of the Nisqually River Delta (Washington, U.S.A.) represents one of the largest efforts toward reestablishing the ecosystem function and resilience of modified habitat in the Puget Sound, particularly for anadromous salmonid species. The opportunity for outmigrating salmon to access and benefit from the expansion of available tidal habitat can be quantified by several physical attributes, which are related to the ecological and physiological responses of juvenile salmon. We monitored a variety of physical parameters to measure changes in opportunity potential from historic, pre‐restoration, and post‐restoration habitat conditions at several sites across the delta. These parameters included channel morphology, water quality, tidal elevation, and landscape connectivity. We conducted fish catch surveys across the delta to determine if salmon was utilizing restored estuary habitat. Overall major channel area increased 42% and major channel length increased 131% from pre‐ to post‐restoration conditions. Furthermore, the results of our tidal inundation model indicated that major channels were accessible up to 75% of the time, as opposed to 30% pre‐restoration. Outmigrating salmon utilized this newly accessible habitat as quickly as 1 year post‐restoration. The presence of salmon in restored tidal channels confirmed rapid post‐restoration increases in opportunity potential on the delta despite habitat quality differences between restored and reference sites.  相似文献   

2.
Disruption of hydrologic connectivity via road crossings is extremely common in Bahamian tidal creeks, resulting in increased sedimentation and decreased habitat quality and quantity for biota. We restored hydrologic connectivity (i.e., tidal flow) in two small Bahamian mangrove tidal creeks in May 2004 and 2005. We observed the characteristics of fish assemblage structure (species richness) and function (secondary production and transient species utilization of restored areas) before and after restoration, and compared these data with fragmented and unfragmented reference creeks. Restoration significantly increased species richness and secondary production of resident fish species in one of the two restored creeks. Increased utilization of the previously blocked wetlands by transient fishes was observed in both creeks. We suggest success could be attributed to the presence of adjacent nearshore recruitment sources, a more complex local seascape (i.e., high habitat heterogeneity in the creek and local nearshore), and the creation of deep upstream refugia pools. This is one of the first studies to use both structural and functional characteristics to monitor the success of restoration in mangrove ecosystems. Studies combining both structural and functional metrics in restoration monitoring are imperative in linking restoration ecology theory with practical ecological restoration efforts.  相似文献   

3.
Habitat restoration projects are often deemed successful based on the presence of the target species within the habitat; however, in some cases the restored habitat acts as an ecological trap and does not help to improve the reproductive success of the target species. Understanding wildlife–habitat relationships through precise measurements of animal behavior can identify critical resources that contribute to high quality habitat and improve habitat restoration practice. We evaluated the success of a restored piping plover (Charadrius melodus) breeding habitat in New Jersey, USA. We identified the major factors influencing foraging rates, compared foraging activity budgets over 3 yr at restored and natural habitats, and explored the potential of artificial tidal ponds as a viable restoration alternative. Adult foraging rates were higher in artificial pond and ephemeral pool habitats, during low tide, and after breeding activity ended. Adult foraging rates were impeded by the presence of people and vehicles within 50 m. Chick foraging rates were highest at artificial ponds and bay shores and lowest in dunes and on sand flats. Chick foraging rates were strongly hindered by the presence of corvids and the number of people within 50 m. In addition, at artificial tidal ponds, piping plovers spent more time foraging and less time engaged in defensive behaviors (vigilance, crouching, and fleeing) compared to other potential habitats. Our findings support the hypothesis that artificial tidal ponds are a valuable, perhaps superior, foraging habitat. Future beach restoration projects should include this feature to maximize habitat quality and restoration success. © 2011 The Wildlife Society.  相似文献   

4.
Stream restoration projects have become increasingly common, and the need for systematic post‐project evaluation, particularly for small‐scale projects, is evident. This study describes how a 70‐m restored reach of a small urban stream, Baxter Creek (in Poinsett Park, El Cerrito, California), was quickly and inexpensively evaluated using habitat, biological, and resident‐attitude assessments. The restoration involved opening a previously culverted channel, planting riparian vegetation, and adding in‐stream step‐pool sequences and sinuosity. Replicated benthic macroinvertebrate samples from the restored site and an upstream unrestored site were compared using several metrics, including taxa richness and a biotic index. Both biological and habitat quality improved in the restored compared with the unrestored section. However, when compared with a creek restored 12 years before, habitat condition was of lower quality in the recently restored creek. A survey of the neighborhood residents indicated that, overall, they were pleased with the restored creek site. The approach used in this demonstration project may be applicable to other small‐scale evaluations of urban stream restorations.  相似文献   

5.
Efforts are underway to restore tidal flow in New England salt marshes that were negatively impacted by tidal restrictions. We evaluated a planned tidal restoration at Mill Brook Marsh (New Hampshire) and at Drakes Island Marsh (Maine) where partial tidal restoration inadvertently occurred. Salt marsh functions were evaluated in both marshes to determine the impacts from tidal restriction and the responses following restoration. Physical and biological indicators of salt marsh functions (tidal range, surface elevations, soil water levels and salinities, plant cover, and fish use) were measured and compared to those from nonimpounded reference sites. Common impacts from tidal restrictions at both sites were: loss of tidal flooding, declines in surface elevation, reduced soil salinity, replacement of salt marsh vegetation by fresh and brackish plants, and loss of fish use of the marsh.Water levels, soil salinities and fish use increased immediately following tidal restoration. Salt-intolerant vegetation was killed within months. After two years, mildly salt-tolerant vegetation had been largely replaced in Mill Brook Marsh by several species characteristic of both high and low salt marshes. Eight years after the unplanned, partial tidal restoration at Drakes Island Marsh, the vegetation was dominated bySpartina alterniflora, a characteristic species of low marsh habitat.Hydrologic restoration that allowed for unrestricted saltwater exchange at Mill Brook restored salt marsh functions relatively quickly in comparison to the partial tidal restoration at Drakes Island, where full tidal exchange was not achieved. The irregular tidal regime at Drakes Island resulted in vegetation cover and patterns dissimilar to those of the high marsh used as a reference. The proper hydrologic regime (flooding height, duration and frequency) is essential to promote the rapid recovery of salt marsh functions. We predict that functional recovery will be relatively quick at Mill Brook, but believe that the habitat at Drakes Island will not become equivalent to that of the reference marsh unless the hydrology is further modified.Corresponding Editor: R.E. Turner Manuseript  相似文献   

6.
Questions: Are species richness and species abundances higher in the presence of tidal creeks? Do species richness and species abundances vary with plot size? Location: Intertidal plain of Volcano Marsh, Bahia de San Quintin, Mexico. Methods: We analysed vegetation patterns in large areas (cells) with tidal creeks (+creek) and without (‐creek). We surveyed vegetation cover, microtopography, habitat type, and distance to creeks in nested plots of five sizes, 0.1, 0.25, 1, 2.5, and 10 m2. Results: Species richness, frequency, cover, and assemblages differed between ±creek cells. Richness tended to be higher in +creek cells, and cover and frequency of individual species differed significantly between ±creek cells. We found consistent patterns in vegetation structure across plot sizes. We encountered 13 species that occurred in 188 unique assemblages. The most common assemblage had six species: Batis maritima, Frankenia salina, Salicornia bigelovii, S. virginica, Salicornia spec. and Triglochin concinna. This assemblage occurred in ±creek cells and at all spatial scales. Of the most common assemblages all but one were composed of multiple species (3–9 species/plot). Conclusions: The persistence of vegetation patterns across a 100‐fold range in spatial scale suggests that similar environmental factors operate broadly to determine species establishment and persistence. Differences in assemblage composition result from variation of frequency and cover of marsh plain species, particularly Suaeda esteroa and Monanthochloe littoralis. The recommendation for restoration of Californian salt marshes is to target (and plant) multi‐species assemblages, not monocultures.  相似文献   

7.
Salt Marsh Restoration in Connecticut: 20 Years of Science and Management   总被引:4,自引:0,他引:4  
In 1980 the State of Connecticut began a tidal marsh restoration program targeting systems degraded by tidal restrictions and impoundments. Such marshes become dominated by common reed grass (Phragmites australis) and cattail (Typha angustifolia and T. latifolia), with little ecological connection to Long Island Sound. The management and scientific hypothesis was that returning tidal action, reconnecting marshes to Long Island Sound, would set these systems on a recovery trajectory. Specific restoration targets (i.e., pre‐disturbance conditions or particular reference marshes) were considered unrealistic. However, it was expected that with time restored tides would return ecological functions and attributes characteristic of fully functioning tidal salt marshes. Here we report results of this program at nine separate sites within six marsh systems along 110 km of Long Island Sound shoreline, with restoration times of 5 to 21 years. Biotic parameters assessed include vegetation, macroinvertebrates, and use by fish and birds. Abiotic factors studied were soil salinity, elevation and tidal flooding, and soil water table depth. Sites fell into two categories of vegetation recovery: slow, ca. 0.5%, or fast, more than 5% of total area per year. Although total cover and frequency of salt marsh angiosperms was positively related to soil salinity, and reed grass stand parameters negatively so, fast versus slow recovery rates could not be attributed to salinity. Instead, rates appear to reflect differences in tidal flooding. Rapid recovery was characterized by lower elevations, greater hydroperiods, and higher soil water tables. Recovery of other biotic attributes and functions does not necessarily parallel those for vegetation. At the longest studied system (rapid vegetation recovery) the high marsh snail Melampus bidentatus took two decades to reach densities comparable with a nearby reference marsh, whereas the amphipod Orchestia grillus was well established on a slow‐recovery marsh, reed grass dominated after 9 years. Typical fish species assemblages were found in restoration site creeks and ditches within 5 years. Gut contents of fish in ditches and on the high marsh suggest that use of restored marsh as foraging areas may require up to 15 years to reach equivalence with reference sites. Bird species that specialize in salt marshes require appropriate vegetation; on the oldest restoration site, breeding populations comparable with reference marshland had become established after 15 years. Use of restoration sites by birds considered marsh generalists was initially high and was still nearly twice that of reference areas even after 20 years. Herons, egrets, and migratory shorebirds used restoration areas extensively. These results support our prediction that returning tides will set degraded marshes on trajectories that can bring essentially full restoration of ecological functions. This can occur within two decades, although reduced tidal action can delay restoration of some functions. With this success, Connecticut's Department of Environmental Protection established a dedicated Wetland Restoration Unit. As of 1999 tides have been restored at 57 separate sites along the Connecticut coast.  相似文献   

8.
Tidal flow to salt marshes throughout the northeastern United States is often restricted by roads, dikes, impoundments, and inadequately sized culverts or bridge openings, resulting in altered ecological structure and function. In this study we evaluated the response of vegetation and nekton (fishes and decapod crustaceans) to restoration of full tidal flow to a portion of the Sachuest Point salt marsh, Middletown, Rhode Island. A before, after, control, impact study design was used, including evaluations of the tide‐restricted marsh, the same marsh after reintroduction of tidal flow (i.e., tide‐restored marsh), and an unrestricted control marsh. Before tidal restoration vegetation of the 3.7‐ha tide‐restricted marsh was dominated by Phragmites australis and was significantly different from the adjacent 6.3‐ha Spartina‐dominated unrestricted control marsh (analysis of similarities randomization test, p < 0.001). After one growing season vegetation of the tide‐restored marsh had changed from its pre‐restoration condition (analysis of similarities randomization test, p < 0.005). Although not similar to the unrestricted control marsh, Spartina patens and S. alterniflora abundance increased and abundance and height of Phragmites significantly declined, suggesting a convergence toward typical New England salt marsh vegetation. Before restoration shallow water habitat (creeks and pools) of the unrestricted control marsh supported a greater density of nekton compared with the tide‐restricted marsh (analysis of variance, p < 0.001), but after one season of restored tidal flow nekton density was equivalent. A similar trend was documented for nekton species richness. Nekton density and species richness from marsh surface samples were similar between the tide‐restored marsh and unrestricted control marsh. Fundulus heteroclitus and Palaemonetes pugio were the numerically dominant fish and decapod species in all sampled habitats. This study provides an example of a quantitative approach for assessing the response of vegetation and nekton to tidal restoration.  相似文献   

9.
The purpose of this paper was to examine the vegetative, sedimentary, nekton and hydrologic conditions pre‐restoration and the initial 2 years post‐restoration at a partially restricted macro‐tidal salt marsh site. Replacement of the culvert increased tidal flow by 88%. This was instrumental in altering the geomorphology of the site, facilitating the creation of new salt marsh pannes, expansion of existing pannes in the mid and high marsh zones, and expansion of the tidal creek network by incorporating relict agricultural ditches. In addition, the increase in area flooded resulted in a significant increase in nekton use, fulfilling the mandate of a federal habitat compensation program to increase and improve the overall availability and accessibility of fish habitat. The restoration of a more natural hydrological regime also resulted in the die‐off of freshwater and terrestrial vegetation along the upland edge of the marsh. Two years post‐restoration, Salicornia europea (glasswort) and Atriplex glabriuscula (marsh orache), were observed growing in these die‐back areas. Similar changes in the vegetation community structure were not observed at the reference site; however, the latter did contain higher species richness. This study represents the first comprehensive, quantitative analysis of ecological response to culvert replacement in a hypertidal ecosystem. These data will contribute to the development of long‐term data sets of pre‐ and post‐restoration, and reference marsh conditions to determine if a marsh is proceeding as expected, and to help with models that are aimed at predicting the response of marshes to tidal restoration at the upper end of the tidal spectrum.  相似文献   

10.
In recent years, salt marsh restoration projects have focused upon restoring hydrology through culvert enlargement to return functional values lost due to reduced tidal flow. To evaluate culvert effects on upstream nekton assemblages, fyke nets were set upstream of tidally restricted creeks, creeks recently restored with larger culverts, and paired reference creeks in New Hampshire and Maine, U.S.A. Subtidal habitats created or enlarged by scour were found immediately upstream of undersized culverts. All marshes supported similar assemblages and densities of fish, suggesting that marshes upstream of moderately restrictive culverts provide suitable habitat to support fish communities. However, densities of Crangon septemspinosa (sand shrimp) were significantly reduced upstream of culverts. A mark–recapture study was conducted in tidally restricted, restored, and reference marsh creeks to evaluate culvert effects on the movement of Fundulus heteroclitus (mummichog), the numerically dominant fish species in New England salt marshes. Recapture data indicated that small culvert size and consequently increased water velocity significantly decreased fish passage rates. We infer that upstream subtidal habitats and greater water velocities due to undersized culverts decreased nekton movements between upstream and downstream areas, resulting in segregated nekton populations. Restoration of salt marsh hydrology by the installation of adequately sized culverts will support increased fish access to marsh habitats and nekton‐mediated export of marsh‐derived production to coastal waters.  相似文献   

11.
Increasing human populations and urban development have led to losses of estuarine habitats for fish and wildlife. Where resource managers are restoring coastal wetlands, in addition to meeting goals related to hydrologic connectivity, biodiversity, and recreational opportunities, efforts are being made to provide habitat that is suitable for juvenile sportfish. An 18‐month study was conducted to compare juvenile sportfish use of natural, restored, and impacted sites along Tampa Bay, Florida, shorelines. Juvenile sportfish densities at restored sites were broadly comparable to natural sites and greater than at impacted sites. However, site‐specific differences in sportfish use did occur within site types. For example, one restored site had significantly higher densities of red drum Sciaenops ocellatus than any other site, while black drum Pogonias cromis were found exclusively at another restored site. To evaluate whether the restored sites are providing suitable habitat for juvenile fish, we assessed growth (estimated from counts of daily rings on otoliths) and condition (determined by lipid analyses) of juvenile common snook Centropomus undecimalis, an archetypal coastal wetland‐dependent species. Growth (0.43–0.56 mm SL/day) and condition (4.6–6.1% lipid of dry weight) exhibited only site‐specific differences and did not vary among natural, restored, and impacted site types. Although mortality rates of juvenile sportfish were not determined, use of a 40‐m seine found that densities of potential piscine predators in these coastal wetlands were relatively low compared to published studies of open estuarine shorelines. The restoration and creation of coastal wetlands in Tampa Bay provides improved habitat for juvenile sportfish.  相似文献   

12.
Tidal marshes are among the most threatened habitats on Earth because of their limited natural extent, a long history of human drainage and modification, and anticipated future sea‐level rise. Tidal marshes also provide services to humans and support species of high conservation interest. Consequently, millions of dollars have been spent on tidal marsh restoration throughout North America. Southern New England has a long history of tidal marsh restorations, often focused on removal of the invasive plant Phragmites australis. Working in 18 Connecticut marshes, we examined the bird community in 21 plots in restoration sites and 19 plots in reference sites. Restoration plots were divided into those in marshes where management involved restoring tidal flow and those where direct Phragmites control (e.g. cutting, herbicide) was used. Saltmarsh sparrows Ammodramus caudacutus, which are considered globally vulnerable to extinction, were less common where tidal flow had been restored than at reference sites and nested in only one of 14 tidal‐flow restoration plots. No abundance differences were found for large wading birds, willets Tringa semipalmata, or seaside sparrows Ammodramus maritimus. Vegetation at sites where tidal flow had been restored showed characteristics typical of lower‐elevation marsh, which is unsuitable for nesting saltmarsh sparrows. We conclude that, although tidal‐flow restorations in Connecticut control Phragmites and restore native saltmarsh vegetation, they produce conditions that are largely unsuitable for one of the highest conservation priority species found in eastern U.S. salt marshes.  相似文献   

13.
Developing quantitative ecosystem–scale expectations of habitat restoration projects and examining trade‐offs associated with alternative approaches has been a challenge for restoration ecology. Many of the largest freshwater lake restoration projects have occurred in Florida to remediate degradation to vegetated littoral habitats resulting from stabilized water levels, but effects across lake food‐webs have not been assessed. We developed an ecosystem model using Ecopath with Ecosim and Ecospace for a generalized large, eutrophic Florida Lake to explore how simulated restoration activities could influence fish communities with emphasis on sport fish abundance. We modeled three habitat restoration scenarios: (1) “no control,” (2) a “10‐year control” that restored littoral habitat every 10 years, and (3) a “combined control” scenario that restored littoral habitat every 10 years with maintenance controls between 10‐year periods. Our “combined control” scenario provided the largest long‐term habitat restoration benefits for sport fish abundance and the fisheries they support. In Ecospace, we simulated a littoral habitat restoration project that reduced lake‐wide tussock coverage from 30 to 15%. Ecospace predicted positive benefits to sport fish and fisheries following the restoration simulation and highlighted the importance of habitat edge effects, spatial design of habitat restoration projects, and sampling designs for evaluating restoration projects.  相似文献   

14.
In the context of delta restoration and its impact on salmonid rearing, success is best evaluated based on whether out‐migrating juvenile salmon can access and benefit from suitable estuarine habitat. Here, we integrated 3 years of post‐restoration monitoring data including habitat availability, invertebrate prey biomass, and juvenile Chinook salmon (Oncorhynchus tshawytscha) physiological condition to determine whether individuals profited from the addition of 364 ha of delta habitat in South Puget Sound, Washington, United States. Productivity in the restored mudflat was comparable to reference sites 3 years after dike removal, surpassing a mean total of 6 million kJ energy from invertebrate prey. This resulted from the development of a complex network of tidal channels and a resurgence in dipteran biomass that was unique to the restoration area. Consequently, a notable shift in invertebrate consumption occurred between 2010 and 2011, whereby individuals switched from eating primarily amphipods to dipteran flies; however, dietary similarity to the surrounding habitat did not change from year to year, suggesting that this shift was a result of a change in the surrounding prey communities. Growth rates did not differ between restored and reference sites, but catch weight was positively correlated with prey biomass, where greater prey productivity appeared to offset potential density‐dependent effects. These results demonstrate how the realized function of restoring estuarine habitat is functionally dependent. High prey productivity in areas with greater connectivity may support healthy juvenile salmon that are more likely to reach the critical size class for offshore survival.  相似文献   

15.
Californian Salt-Marsh Vegetation: An Improved Model of Spatial Pattern   总被引:6,自引:0,他引:6  
Although tidal wetland vegetation patterns are typically related to elevation, we hypothesized that the vertical range of a species may shift where the topography is more heterogeneous. We examined plant species occurrences in relation to elevation, proximity to the bay, and proximity to tidal creeks at a near-pristine wetland in San Quintín Bay, Baja California, Mexico. At the whole-wetland scale, most species occurred primarily within a 30-cm elevation band (the marsh plain). However, Spartina foliosa occurred only at the bayward margin, even though “suitable” elevations were present further inland. A similar pattern was found in San Diego Bay. At the microtopographic scale, three species on the marsh plain were strongly influenced by elevation, whereas four species responded to both elevation and proximity to tidal creeks. The latter species tended to “avoid” the lower 10 cm of the marsh plain except near a tidal creek. Species richness was thus greater (by 0.6 species at the lowest 10-cm class) at the tidal creek margin. Better drainage near creeks is the hypothesized cause. Our results help explain why species that are transplanted to constructed wetlands do not always grow at the full range of elevations they occupy in natural wetlands. We recommend that species be introduced to their modal elevation (determined from nearby reference marshes) and that salt-marsh construction designs include topographic heterogeneity (complex tidal creek networks). The analysis of broad-scale and fine-scale patterns of occurrence also suggests new habitat nomenclature. Elevation-based terms (“low,”“middle,” and “high” marsh) should be replaced by a system that considers elevation, landscape position, and conspicuous species. We suggest three habitat designations: (a) the high marsh—a 30- to 70-cm elevation range with Salicornia subterminalis; (b) the marsh plain—a 30-cm elevation range with heterogeneous topography and up to nine common species; and (c) cordgrass habitat—the bayward portion of the marsh plain and lower elevations, all occupied by Spartina foliosa. Although these habitats do not have discrete boundaries, separate terms are needed for wetland restoration plans and these designations will improve recognition that vegetation patterns respond to horizontal, as well as vertical, position.  相似文献   

16.
Modeling Habitat Change in Salt Marshes After Tidal Restoration   总被引:4,自引:0,他引:4  
Salt marshes continue to degrade in the United States due to indirect human impacts arising from tidal restrictions. Roads or berms with inadequate provision for tidal flow hinder ecosystem functions and interfere with self‐maintenance of habitat, because interactions among vegetation, soil, and hydrology within tidally restricted marshes prevent them from responding to sea level rise. Prediction of the tidal range that is expected after restoration relative to the current geomorphology is crucial for successful restoration of salt marsh habitat. Both insufficient (due to restriction) and excessive (due to subsidence and sea level rise) tidal flooding can lead to loss of salt marshes. We developed and applied the Marsh Response to Hydrological Modifications model as a predictive tool to forecast the success of management scenarios for restoring full tides to previously restricted areas. We present an overview of a computer simulation tool that evaluates potential culvert installations with output of expected tidal ranges, water discharges, and flood potentials. For three New England tidal marshes we show species distributions of plants for tidally restricted and nonrestricted areas. Elevation ranges of species are used for short‐term (<5 years) predictions of changes to salt marsh habitat after tidal restoration. In addition, elevation changes of the marsh substrate measured at these sites are extrapolated to predict long‐term (>5 years) changes in marsh geomorphology under restored tidal regimes. The resultant tidal regime should be designed to provide habitat requirements for salt marsh plants. At sites with substantial elevation losses a balance must be struck that stimulates elevation increases by improving sediment fluxes into marshes while establishing flooding regimes appropriate to sustain the desired plants.  相似文献   

17.
Functional responses of estuarine fish species to environmental perturbations such as wetland impoundment, changes in water quality, and sediment accretion are investigated. The study focuses on the feeding, growth and habitat use by California killifish (Fundulus parvipinnis), topsmelt (Antherinops affinis), and juvenile California halibut (Paralichthys californicus) in impacted coastal wetlands to provide an ecological basis for guidance on the management and restoration of these ecosystems. The ecology of California killifish, Fundulus parvipinnis, is closely tied with the marsh surface, which they access at high tide to feed and grow. Field estimates of food consumption show that killifish can increase their food intake by two-fold to five-fold by adding marsh surface foods to their diet. Bioenergetics modeling predicts that killifish can grow over an order of magnitude faster if they add intertidal marsh surfaces to their subtidal feeding areas. Tidal inlet closures and increased marsh surface elevations due to sediment accretion can restrict killifish access to the marsh surface, affecting its growth and fitness. An open tidal inlet and tidal creek networks that allow killifish to access the marsh at high tide must be incorporated into the restoration design. Topsmelt and California halibut are also adversely affected by tidal inlet closures. Food consumption rates of topsmelt are 50% lower when the tidal inlet is closed, compared to when the estuary is tidally-flushed. Tidal inlet closures inadvertently induce variations in water temperature and salinity and negatively affect growth of juvenile California halibut. Tidal creek networks which consist of channels and creeks of various orders are also important to halibut. Large halibut (>200 mm TL) inhabit deeper, high order channels for thermal refuge, while small halibut (<120 mm TL) are abundant in lower order channels where they can feed on small-sized prey which are typically less abundant in high order channels. Maintaining an open tidal inlet, implementing sediment management programs and designing coastal wetlands with tidal creek networks adjacent to intertidal salt marsh habitat (for fish access) are key elements that need to be considered during the planning and implementation of coastal wetland restoration projects.  相似文献   

18.
Restoration is increasingly implemented as a strategy to mitigate global declines in biogenic habitats, such as salt marshes and oyster reefs. Restoration efforts could be improved if we knew how site characteristics at landscape scales affect the ecological success of these foundation species. In this study, we determined how salt marsh shoreline geomorphologies (e.g. with variable hydrodynamic energy, fetch, erosion rates, and slopes) affect the success of restored intertidal oyster reefs, as well as how fauna utilize restored reefs and forage along marsh habitats. We constructed oyster reefs along three marsh shoreline geomorphologies in May 2012: 1) “creek” (small‐fetch, gradual‐sloped shoreline), “ramp” (large‐fetch, gradual‐sloped shoreline), and “scarp” (large‐fetch, steep‐sloped shoreline). Following recruitment, oyster spat density was greatest on ramp reefs; however, 2 years later, the highest adult oyster densities were found on creek reefs. Total nekton and blue crab catch rates in trawl nets were highest in the creek, while piscivore catch rates in gill nets were highest along the scarp shoreline. We found no difference in predation on snails in the salt marsh behind constructed reef and nonconstructed reference sites, but there were more snails consumed in the creek shoreline, which corresponded with the distribution of their major predator—blue crabs. We conclude that oyster reef construction was most successful for oysters in small‐fetch, gradual‐sloped, creek environments. However, nekton abundance did not always follow the same trends as oyster density, which could suggest constructed reefs may offer similar habitat‐related functions (prey availability and refuge) already present along existing salt marsh borders.  相似文献   

19.
To examine the role of humans in the non‐native fish introductions, we measured the frequency of occurrence and density of non‐native fishes in ponds (Epping Forest, Essex, England) that had been restored (drained of water and voided of fish or treated with rotenone) on a known date and into which no piscivorous or non‐native fishes had subsequently been stocked intentionally. For each pond, the period of time since pond restoration, pond area, distance to nearest residential housing, distance to nearest footpath, distance to nearest water body or stream, and the proportion of pond vegetated were measured. The occurrence of both non‐native and unexpected native fish species was non‐random, and the number of ornamental varieties was found to increase as pond distance from the nearest road decreased. Variety richness of each of three categories of fish (non‐native, goldfish Carassius auratus and native) was significantly correlated with at least two of the following variables: distance from nearest road, nearest footpath and nearest pond. The rate of non‐native fish introductions (adjusted variety richness per year) could also be estimated from pond distance to the nearest road, being about 3.5 ornamental varieties introduced per year in ponds adjacent to roads, but the rate appears to be much greater in ponds that had recently (<1.5 years) undergone restoration. Implications for conservation and management, as well as the potential role of societal issues such as recreational activities, cultural and religious practices, are discussed.  相似文献   

20.
Bluefish, Pomatomus saltatrix, are recreationally valuable finfish along the Atlantic seaboard and in the Chesapeake Bay. Diet and habitat use patterns for bluefish life history intervals in Chesapeake Bay estuaries are poorly described although it is widely acknowledged that this apex piscivorous species relies on estuarine habitat for feeding and nursery grounds after oceanic spawning and inshore migration of larvae. Bluefish diet, distribution, and abundance patterns were examined in relation to oyster reef, oyster bar, and sand bottom habitat in the Piankatank River, Virginia. Bluefish from all sites were predominantly piscivorous and were more abundant at reef sites than non-reef sites. Bluefish caught in association with the oyster reef consumed a wider diversity of prey items than fish from other sites; diet diversity may contribute to bluefish success during periods when small pelagic food fish abundance is reduced. Bluefish estuarine habitat use is positively correlated with the presence of oyster shell habitat and the complex trophic communities centering on oyster reefs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号