首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The transition to tuberization contributes greatly to the adaptability of potato to a wide range of environments. Phytochromes are important light receptors for the growth and development of plants, but the detailed functions of phytochromes remain unclear in potato. In this study, we first confirmed that phytochrome F ( St PHYF ) played essential roles in photoperiodic tuberization in potato. By suppressing the St PHYF gene, the strict short‐day potato genotype exhibited normal tuber formation under long‐day ( LD ) conditions, together with the degradation of the CONSTANTS protein St COL 1 and modulation of two FLOWERING LOCUS  T ( FT ) paralogs, as demonstrated by the repression of St SP 5G and by the activation of St SP 6A during the light period. The function of St PHYF was further confirmed through grafting the scion of St PHYF ‐silenced lines, which induced the tuberization of untransformed stock under LD s, suggesting that St PHYF was involved in the production of mobile signals for tuberization in potato. We also identified that St PHYF exhibited substantial interaction with St PHYB both in vitro and in vivo . Therefore, our results indicate that St PHYF plays a role in potato photoperiodic tuberization, possibly by forming a heterodimer with St PHYB .  相似文献   

2.
3.
4.
    
The Ptr1 (Pseudomonas tomato race 1) locus in Solanum lycopersicoides confers resistance to strains of Pseudomonas syringae pv. tomato expressing AvrRpt2 and Ralstonia pseudosolanacearum expressing RipBN. Here we describe the identification and phylogenetic analysis of the Ptr1 gene. A single recombinant among 585 F2 plants segregating for the Ptr1 locus was discovered that narrowed the Ptr1 candidates to eight nucleotide‐binding leucine‐rich repeat protein (NLR)‐encoding genes. From analysis of the gene models in the S. lycopersicoides genome sequence and RNA‐Seq data, two of the eight genes emerged as the strongest candidates for Ptr1. One of these two candidates was found to encode Ptr1 based on its ability to mediate recognition of AvrRpt2 and RipBN when it was transiently expressed with these effectors in leaves of Nicotiana glutinosa. The ortholog of Ptr1 in tomato and in Solanum pennellii is a pseudogene. However, a functional Ptr1 ortholog exists in Nicotiana benthamiana and potato, and both mediate recognition of AvrRpt2 and RipBN. In apple and Arabidopsis, recognition of AvrRpt2 is mediated by the Mr5 and RPS2 proteins, respectively. Phylogenetic analysis places Ptr1 in a distinct clade compared with Mr5 and RPS2, and it therefore appears to have arisen by convergent evolution for recognition of AvrRpt2.  相似文献   

5.
6.
    
Specifying the relationship between pests and their host plants in terms of damage is one of the basic concepts of integrated pest management (IPM) programmes. The crop loss and economic injury level (EIL) of Tuta absoluta (Lepidoptera: Gelechiidae) were determined on different tomato cultivars using gain threshold (field experiment) and regression (semi‐field experiment) methods. By assessing the crop loss in 2015 and 2016, four out of seven infested tomato cultivars had a significant yield loss in terms of weight of total fruits versus the control under the open‐field conditions. However, the total number of tomato cultivars had no significant difference to control treatment. The semi‐field experiment included six treatments (0, 2, 4, 6, 8 and 10 gravid females/plant) and examined two tomato cultivars. The tomato cages with between 6 and 10 gravid females/plant showed the highest number and weight of damaged fruits. Based on pesticide control costs, the market value of tomato and the control efficacy, we determined the EIL for T. absoluta. In the field experiment, the EIL value for T. absoluta on “Petomech,” “Cal JN3,” “Rio Grande” and “Early Urbana Y” cultivars was 4.15, 4.47, 4.70 and 5.04 larvae per plant, respectively. Based on regression equations, we calculated the EIL values for T. absoluta on “Cal JN3” and “Early Urbana Y” to be 4.75 and 5.44 larvae/plant, respectively. Crop loss assessment and EIL are necessary components of cost‐effective IPM programs and can be effective tools for making decisions about the application of pesticides against T. absoluta.  相似文献   

7.
    
Solanum tuberosum potato lines with high amylose content were generated by crossing with the wild potato species Solanum sandemanii followed by repeated backcrossing to Solanum tuberosum lines. The trait, termed increased amylose (IAm), was recessive and present after three generations of backcrossing into S. tuberosum lines (6.25% S. sandemanii genes). The tubers of these lines were small, elongated and irregular with small and misshaped starch granules and high sugar content. Additional backcrossing resulted in less irregular tuber morphology, increased starch content (4.3%–9.5%) and increased amylose content (29%–37.9%) but indifferent sugar content. The amylose in the IAm starch granules was mainly located in peripheral spots, and large cavities were found in the granules. Starch pasting was suppressed, and the digestion‐resistant starch (RS) content was increased. Comprehensive microarray polymer profiling (CoMPP) analysis revealed specific alterations of major pectic and glycoprotein cell wall components. This complex phenotype led us to search for candidate IAm genes exploiting its recessive trait. Hence, we sequenced genomic DNA of a pool of IAm lines, identified SNPs genome wide against the draft genome sequence of potato and searched for regions of decreased heterozygosity. Three regions, located on chromosomes 3, 7 and 10, respectively, displayed markedly less heterozygosity than average. The only credible starch metabolism‐related gene found in these regions encoded the isoamylase‐type debranching enzyme Stisa1. Decreased expression of mRNA (>500 fold) and reduced enzyme activity (virtually absent from IAm lines) supported Stisa1 as a candidate gene for IAm.  相似文献   

8.
9.
    
Plant age‐ and plant stage‐related changes in the resistance of rice, Oryza sativa, to its most important insect pest in the US, the rice water weevil (Lissorhoptrus oryzophilus), were investigated in a series of field and greenhouse choice and no‐choice studies. Rice plants were susceptible to infestation by rice water weevils over a broad range of plant ontogenetic stages, from at least the early vegetative stage to well into the reproductive stage. There was, however, a clear preference expressed by rice water weevils in both choice and no‐choice experiments for plants in (or nearly in) the tillering stage of development, with pre‐tillering and reproductive stage plants less preferred. The relationship between rice plant age and susceptibility to weevils is thus nonlinear. This study constitutes one of the most thorough studies to date of the relationship in a grass species between plant age and susceptibility to herbivores. The results provide a biological explanation for observed patterns of weevil infestations and a rationale for the cultural practice of delayed flooding.  相似文献   

10.
11.
12.
    
Wound‐induced suberin deposition involves the temporal and spatial coordination of phenolic and fatty acid metabolism. Phenolic metabolism leads to both soluble metabolites that accumulate as defense compounds as well as hydroxycinnamoyl derivatives that form the basis of the poly(phenolic) domain found in suberized tissue. Fatty acid metabolism involves the biosynthesis of very‐long‐chain fatty acids, 1‐alkanols, ω‐hydroxy fatty acids and α,ω‐dioic acids that form a poly(aliphatic) domain, commonly referred to as suberin. Using the abscisic acid (ABA) biosynthesis inhibitor fluridone (FD), we reduced wound‐induced de novo biosynthesis of ABA in potato tubers, and measured the impact on the expression of genes involved in phenolic metabolism (StPAL1, StC4H, StCCR, StTHT), aliphatic metabolism (StCYP86A33, StCYP86B12, StFAR3, StKCS6), metabolism linking phenolics and aliphatics (StFHT) or acyl chains and glycerol (StGPAT5, StGPAT6), and in the delivery of aliphatic monomers to the site of suberization (StABCG1). In FD‐treated tissue, both aliphatic gene expression and accumulation of aliphatic suberin monomers were delayed. Exogenous ABA restored normal aliphatic suberin deposition in FD‐treated tissue, and enhanced aliphatic gene expression and poly(aliphatic) domain deposition when applied alone. By contrast, phenolic metabolism genes were not affected by FD treatment, while FD + ABA and ABA treatments slightly enhanced the accumulation of polar metabolites. These data support a role for ABA in the differential induction of phenolic and aliphatic metabolism during wound‐induced suberization in potato.  相似文献   

13.
14.
    
  相似文献   

15.
    
Plants have mechanisms to recognize and reject pollen from other species. Although widespread, these mechanisms are less well understood than the self‐incompatibility (SI) mechanisms plants use to reject pollen from close relatives. Previous studies have shown that some interspecific reproductive barriers (IRBs) are related to SI in the Solanaceae. For example, the pistil SI proteins S‐RNase and HT protein function in a pistil‐side IRB that causes rejection of pollen from self‐compatible (SC) red/orange‐fruited species in the tomato clade. However, S‐RNase‐independent IRBs also clearly contribute to rejecting pollen from these species. We investigated S‐RNase‐independent rejection of Solanum lycopersicum pollen by SC Solanum pennellii LA0716, SC. Solanum habrochaites LA0407, and SC Solanum arcanum LA2157, which lack functional S‐RNase expression. We found that all three accessions express HT proteins, which previously had been known to function only in conjunction with S‐RNase, and then used RNAi to test whether they also function in S‐RNase‐independent pollen rejection. Suppressing HT expression in SC S. pennellii LA0716 allows S. lycopersicum pollen tubes to penetrate farther into the pistil in HT suppressed plants, but not to reach the ovary. In contrast, suppressing HT expression in SC. Solanum habrochaites LA0407 and in SC S. arcanum LA2157 allows S. lycopersicum pollen tubes to penetrate to the ovary and produce hybrids that, otherwise, would be difficult to obtain. Thus, HT proteins are implicated in both S‐RNase‐dependent and S‐RNase‐independent pollen rejection. The results support the view that overall compatibility results from multiple pollen–pistil interactions with additive effects.  相似文献   

16.
    
Plant pathogens of the oomycete genus Phytophthora produce virulence factors, known as RxLR effector proteins that are transferred into host cells to suppress disease resistance. Here, we analyse the function of the highly conserved RxLR24 effector of Phytophthora brassicae. RxLR24 was expressed early in the interaction with Arabidopsis plants and ectopic expression in the host enhanced leaf colonization and zoosporangia formation. Co‐immunoprecipitation (Co‐IP) experiments followed by mass spectrometry identified different members of the RABA GTPase family as putative RxLR24 targets. Physical interaction of RxLR24 or its homologue from the potato pathogen Phytophthora infestans with different RABA GTPases of Arabidopsis or potato, respectively, was confirmed by reciprocal Co‐IP. In line with the function of RABA GTPases in vesicular secretion, RxLR24 co‐localized with RABA1a to vesicles and the plasma membrane. The effect of RxLR24 on the secretory process was analysed with fusion constructs of secreted antimicrobial proteins with a pH‐sensitive GFP tag. PATHOGENESIS RELATED PROTEIN 1 (PR‐1) and DEFENSIN (PDF1.2) were efficiently exported in control tissue, whereas in the presence of RxLR24 they both accumulated in the endoplasmic reticulum. Together our results imply a virulence function of RxLR24 effectors as inhibitors of RABA GTPase‐mediated vesicular secretion of antimicrobial PR‐1, PDF1.2 and possibly other defence‐related compounds.  相似文献   

17.
田间条件下甘蔗品种对蛀茎夜蛾的抗性评价   总被引:1,自引:0,他引:1  
[目的]蛀茎夜蛾Sesamia spp.是伊朗和其他国家(包括印度、巴基斯坦、斯里兰卡和日本)甘蔗上最具破坏性的害虫.蛀茎夜蛾幼虫钻蛀茎秆,对茎秆产生为害,降低重量和含糖量并降低甘蔗汁品质.应用抗性品种是一种有效的工具,对环境无不利影响.本研究旨在评价甘蔗商业品种对蛀茎夜蛾的抗性.[方法]在伊朗Ahwaz的Salman-Farsi Ago-industry Farms于2013-2014和2014-2015两个连续年份,采用随机区组设计进行5次重复试验.应用了CP69-1062,CP48-103,CP57-614,CP73-21,SP70-1143,IRC99-01,IRC99-02和L62-96 8个品种.在收获前,随机取20株完整的甘蔗茎秆进行蛀茎夜蛾的为害评估.记录受害茎秆百分比、被钻蛀的节间百分比(percent ofinternodes bored,IB)、出口孔的数目、活的蛀茎夜蛾的数目、每品种每公顷面积中蛾的繁殖量(mothproduction per hectare of each variety,MP).[结果]各测定参数在品种间均存在显著差异.从被钻蛀的节间百分比和蛾的繁殖指数判断,L62-96是最敏感的品种(2014年:14.58% IB,95 200 MP/ha;2015年:16.76% IB和111 300 MP/ha),其次是CP69-1062和CP48-103;CP57-614是这两年中抗性最强的品种(2014年:1.24% IB,8 400 MP/ha;2015年:1.02% IB,7 000 MP/ha).[结论]建议限制敏感品种的栽培,并应用其他控制措施,结合品种抗性,以治理敏感品种中的蛀茎夜蛾.  相似文献   

18.
    
Understanding plant‐mediated interactions in agricultural systems may facilitate the development of novel and improved management practices, which is important, as management of these insects is currently heavily reliant on insecticides. The fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae, Prodeniini), is a sporadic pest of rice fields in the southern USA. In southwestern Louisiana, this defoliating insect typically attacks rice early in the growth season, before fields are flooded. Defoliation by fall armyworm larvae may trigger increased expression of plant defenses, which may result in increased resistance to subsequent herbivores. The rice water weevil (RWW), Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae, Stenopelmini), enters rice fields as an adult both before and after flooding, but oviposition and larval infestation occur only after fields are flooded. RWW may be affected by changes in plant resistance caused by fall armyworm defoliation before flooding. The objectives of this study were to investigate the plant‐mediated effects of natural and artificial defoliation on population densities of RWW larvae after flooding and on the ability of rice plants to compensate for root injury by RWW larvae. In the 2015 season, fall armyworm defoliation before flooding resulted in reduced RWW densities after flooding. However, in 2016 no significant effects of fall armyworm defoliation on densities of RWW larvae were detected. Similarly, mechanical defoliation of rice before flooding did not affect RWW densities after flooding. Although lowest yields were observed in plots subjected to both root injury and defoliation, there was little evidence of a greater than additive reduction in yields from simultaneous injury. These results suggest a lack of plant‐mediated interactions among these two pests in rice in the southern USA.  相似文献   

19.
    
Diversifying agricultural landscapes may mitigate biodiversity declines and improve pest management. Yet landscapes are rarely managed to suppress pests, in part because researchers seldom measure key variables related to pest outbreaks and insecticides that drive management decisions. We used a 13‐year government database to analyse landscape effects on European grapevine moth (Lobesia botrana) outbreaks and insecticides across c. 400 Spanish vineyards. At harvest, we found pest outbreaks increased four‐fold in simplified, vineyard‐dominated landscapes compared to complex landscapes in which vineyards are surrounded by semi‐natural habitats. Similarly, insecticide applications doubled in vineyard‐dominated landscapes but declined in vineyards surrounded by shrubland. Importantly, pest population stochasticity would have masked these large effects if numbers of study sites and years were reduced to typical levels in landscape pest‐control studies. Our results suggest increasing landscape complexity may mitigate pest populations and insecticide applications. Habitat conservation represents an economically and environmentally sound approach for achieving sustainable grape production.  相似文献   

20.
    
Plant root secretion can be regarded as signal molecules, which exerts impact on microorganisms in the rhizosphere ecological niche. We obtained gene expression profile of Ralstonia solanacearumPO41 under the root secretions environment of Solanum tuberosum at the time points of 8 hrs, 16 hrs and 24 hrs, respectively, after infection with RNA microarray technology. Bioinformatics tools of differential genes expression analysis, GO functional analysis, cluster analysis and pathway analysis were conducted to find out the pathogenic genes and other related genes. We found that the virulence factors of R. solanacearum mainly focused on the output pathways of toxic protein (Sec pathway, Tat pathway and type III secretion system (T3SS)), the aggregation and transfer of exopolysaccharides and the chemotactic movement and adhesion of flagellum in the potato root secretion ecological niche, while the virulence factors in the atypical output pathway mainly distributed in Sec (secB, secDF, yidc) and Tat (tatA, tatC) pathways to promote the output of folded and unfolded toxic proteins. The fliIATPase was obviously upregulated 8 hrs postinoculation, suggesting that type III secretion system was only active at the early stage of PO41 infection. The upregulated expression of phosphoglucomutase and epimerase showed that the virulence factor of exopolysaccharides (EPS) was synthesized at the early stage of R. solanacearum infection. Chemotactic receptor and motor protein were obviously upregulated within 24 hrs postinoculation. Our study revealed that R. solanacearumPO41 had already colonized to the roots within 24 hrs with the stimulating of root secretion. Some pathogenic genes were upregulated during this period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号