首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 631 毫秒
1.
Forty years ago, the ‘life‐dinner principle’ was proposed as an example of an asymmetry that may lead prey species to experience stronger selection than their predators, thus accounting for the high frequency with which prey escape alive from interaction with a predator. This principle remains an influential concept in the scientific literature, despite several works suggesting that the concept relies on many under‐appreciated assumptions and does not apply as generally as was initially proposed. Here, we present a novel model describing a very different asymmetry to that proposed in the life‐dinner principle, but one that could apply broadly. We argue that asymmetries between the relative costs and benefits to predators and prey of selecting a risky behaviour during an extended predator–prey encounter could lead to an enhanced likelihood of escape for the prey. Any resulting advantage to prey depends upon there being a behaviour or choice that introduces some inherent danger to both predator and prey if they adopt it, but which if the prey adopts the predator must match in order to have a chance of successful predation. We suggest that the circumstances indicated by our model could apply broadly across diverse taxa, including both risky spatial or behavioural choices.  相似文献   

2.
Ambiguous empirical support for ‘landscapes of fear’ in natural systems may stem from failure to consider dynamic temporal changes in predation risk. The lunar cycle dramatically alters night‐time visibility, with low luminosity increasing hunting success of African lions. We used camera‐trap data from Serengeti National Park to examine nocturnal anti‐predator behaviours of four herbivore species. Interactions between predictable fluctuations in night‐time luminosity and the underlying risk‐resource landscape shaped herbivore distribution, herding propensity and the incidence of ‘relaxed’ behaviours. Buffalo responded least to temporal risk cues and minimised risk primarily through spatial redistribution. Gazelle and zebra made decisions based on current light levels and lunar phase, and wildebeest responded to lunar phase alone. These three species avoided areas where likelihood of encountering lions was high and changed their behaviours in risky areas to minimise predation threat. These patterns support the hypothesis that fear landscapes vary heterogeneously in both space and time.  相似文献   

3.
Scorpions are dominant predators in some environments. Nevertheless, most studies of predatory behavior in scorpions have focused on diet composition whereas some other relevant aspects, such as predatory strategy, have been poorly explored. Herein we evaluate the prey acceptance and predatory strategy of the scorpion Bothriurus bonariensis against sympatric prey with different defenses. As prey, we selected earwigs (Forficula cf. auricularia) which use pincer-like defensive appendages, hard-bodied isopods (Armadillium vulgare) known for their conglobation defensive strategy, soft bodied isopods (Porcellio cf. scaber), which secrete noxious substances as defense mechanisms, cockroaches with limited defensive mechanisms (Blatta cf. orientalis.) and spiders (Lycosa cf. poliostoma) which possess venomous fangs. Prey were offered to 21 adults of B. bonariensis in random order until all prey had been offered to all scorpions. Prey consumption and the number of attempts needed for capture were recorded. We also evaluated the effect of sting use on immobilization time as well as the prey capture strategies on the most consumed prey. We found that despite using a similar number of attempts for capturing all prey, spiders and armadillid isopods were less consumed than other prey. Immobilization times were longer for earwigs than for armadillid isopods and cockroaches. Scorpions used alternative predatory strategies against these aforementioned prey, although the stinger was used against all of them. These results show that scorpions are able to use different predatory strategies which might allow them to include prey with diverse defensive strategies in their diet.  相似文献   

4.
We present a framework for explaining variation in predator invasion success and predator impacts on native prey that integrates information about predator–prey naïveté, predator and prey behavioral responses to each other, consumptive and non‐consumptive effects of predators on prey, and interacting effects of multiple species interactions. We begin with the ‘naïve prey’ hypothesis that posits that naïve, native prey that lack evolutionary history with non‐native predators suffer heavy predation because they exhibit ineffective antipredator responses to novel predators. Not all naïve prey, however, show ineffective antipredator responses to novel predators. To explain variation in prey response to novel predators, we focus on the interaction between prey use of general versus specific cues and responses, and the functional similarity of non‐native and native predators. Effective antipredator responses reduce predation rates (reduce consumptive effects of predators, CEs), but often also carry costs that result in non‐consumptive effects (NCEs) of predators. We contrast expected CEs versus NCEs for non‐native versus native predators, and discuss how differences in the relative magnitudes of CEs and NCEs might influence invasion dynamics. Going beyond the effects of naïve prey, we discuss how the ‘naïve prey’, ‘enemy release’ and ‘evolution of increased competitive ability’ (EICA) hypotheses are inter‐related, and how the importance of all three might be mediated by prey and predator naïveté. These ideas hinge on the notion that non‐native predators enjoy a ‘novelty advantage’ associated with the naïveté of native prey and top predators. However, non‐native predators could instead suffer from a novelty disadvantage because they are also naïve to their new prey and potential predators. We hypothesize that patterns of community similarity and evolution might explain the variation in novelty advantage that can underlie variation in invasion outcomes. Finally, we discuss management implications of our framework, including suggestions for managing invasive predators, predator reintroductions and biological control.  相似文献   

5.
Chemical cues transmitted through the environment are thought to underlie many prey responses to predation risk, but despite the known ecological and evolutionary significance of such cues, their basic composition are poorly understood. Using anuran tadpoles (prey) and dragonfly larvae (predators), we identified chemical cues associated with predation risk via solid phase extraction and mass spectrometry of the extracts. We found that dragonfly larvae predators consistently produced a negative ion, m/z 501.3, when they fed on bullfrog (Rana catesbeiana) and mink frog (Rana septentrionalis) tadpoles, but this ion was absent when dragonflies were fasted or fed invertebrate prey. When tadpole behavioral responses to dragonfly chemical cues were examined, tadpoles reduced their activity, particularly in response to dragonflies feeding on tadpoles. Furthermore, a negative correlation was noted between the level of tadpole activity and the concentration of the m/z 501.3 compound in dragonfly feeding trials, indicating that this ion was possibly responsible for tadpole anti-predator behavior.  相似文献   

6.
The likelihood of encountering a predator influences prey behavior and spatial distribution such that non‐consumptive effects can outweigh the influence of direct predation. Prey species are thought to filter information on perceived predator encounter rates in physical landscapes into a landscape of fear defined by spatially explicit heterogeneity in predation risk. The presence of multiple predators using different hunting strategies further complicates navigation through a landscape of fear and potentially exposes prey to greater risk of predation. The juxtaposition of land cover types likely influences overlap in occurrence of different predators, suggesting that attributes of a landscape of fear result from complexity in the physical landscape. Woody encroachment in grasslands furnishes an example of increasing complexity with the potential to influence predator distributions. We examined the role of vegetation structure on the distribution of two avian predators, Red‐tailed Hawk (Buteo jamaicensis) and Northern Harrier (Circus cyaneus), and the vulnerability of a frequent prey species of those predators, Northern Bobwhite (Colinus virginianus). We mapped occurrences of the raptors and kill locations of Northern Bobwhite to examine spatial vulnerability patterns in relation to landscape complexity. We use an offset model to examine spatially explicit habitat use patterns of these predators in the Southern Great Plains of the United States, and monitored vulnerability patterns of their prey species based on kill locations collected during radio telemetry monitoring. Both predator density and predation‐specific mortality of Northern Bobwhite increased with vegetation complexity generated by fine‐scale interspersion of grassland and woodland. Predation pressure was lower in more homogeneous landscapes where overlap of the two predators was less frequent. Predator overlap created areas of high risk for Northern Bobwhite amounting to 32% of the land area where landscape complexity was high and 7% where complexity was lower. Our study emphasizes the need to evaluate the role of landscape structure on predation dynamics and reveals another threat from woody encroachment in grasslands.  相似文献   

7.
Predation threat-associated behavioral response was studied in Rana temporalis tadpoles to discover the importance of predators’ visual and chemical cues (kairomones and diet-derived metabolites of consumed prey) in evoking antipredator behavior. The caged predators (dragonfly larvae) fed on prey tadpoles or insects (Notonecta spp.) and water conditioned with the predators provided the threat stimuli to the tadpole prey. The predators’ visual cues were ineffective in evoking antipredator behaviors in the tadpole prey. However, exposure to caged tadpole-fed predators or water conditioned with tadpole-fed predators elicited predator avoidance behavior in the tadpoles; they stayed away from the predators, significantly reduced swimming activity (swimming time and distance traveled), and increased burst speed. Interestingly, exposure to water conditioned with starved predators did not elicit any antipredator behavior in the prey. Further, the antipredator responses of predator-experienced tadpoles were significantly greater than those exhibited by predator-na?ve tadpoles. The study shows that R. temporalis tadpoles assess predation threat based exclusively on chemical cues emanating from the predators’ dietary metabolites and that the inclusion of conspecific prey items in the diet of the predators is perceived as a threat. The study also shows that antipredator behavior in these tadpoles is innate and is enhanced during subsequent encounters with the predators.  相似文献   

8.
9.
Generalist predators have to deal with prey with sometimes very different morphologies and defensive behaviors. Therefore, such predators are expected to express plasticity in their predation strategy. Here we investigated the predatory behavior of the recluse spider Loxosceles rufipes (Araneae, Sicariidae) when attacking prey with different morphologies and defensive mechanisms. We expected L. rufipes to show different prey capture strategies and variable acceptance towards each prey type. Potential prey species were collected directly from the web or in the surroundings of the web-building site of L. rufipes. We collected and used the following in our experiments: termite workers (Nasutitermes sp.), lepidopteran larvae (Eurema salome), ants (Camponotus sp.) and isopods (Tylidae). We paired these prey with L. rufipes and recorded their behavior in captivity, quantifying acceptance rate, immobilization time and the sequence of behaviors by the predator. The acceptance rate was lower for isopods but not different among other prey. The immobilization time was higher for isopods than for termites and similar for the other pairwise comparisons. The behavioral sequence was similar for all prey except for isopods, which were also bit more often. Our combined results show plasticity in the behavior of L. rufipes and also show it subdues a potentially dangerous prey (ant) and an armored prey (isopod).  相似文献   

10.
The spatiotemporal game between predators and prey is a fundamental process governing their distribution dynamics. Players may adopt different tactics as the associated costs and benefits change through time. Yet few studies have investigated the potentially simultaneous and dynamic nature of movement tactics used by both players. It is particularly unclear to what extent perceived predation risk mediates the fine‐scale distribution of large and dangerous prey, which are mostly driven by bottom–up, resource‐related processes. We built habitat use and movement models based on 10 years of monitoring GPS‐collared grey wolves Canis lupus and plains bison Bison bison bison in Prince Albert National Park, Canada, to investigate the predator–large prey game in a multi‐prey system. Bison did not underuse patches of high‐quality vegetation at any time during the seasonal cycle even though wolves were selectively patrolling these areas. Rather, in at least one season, bison engaged in complex tactics comprised of proactive responses to the long‐term distribution (risky places) and reactive responses to the immediate proximity (risky times) of their opponent. In summer–autumn, bison reduced the time spent in food‐rich patches as both the long‐term use and the immediate proximity of wolves increased. By demonstrating that wolf distribution triggers patch abandonment by bison, we provide a key element in support of the shell game hypothesis – where prey move constantly to avoid predators attempting to anticipate their location. In winter, a season of relatively high energetic stress, bison no longer abandoned food‐rich patches as predation risk increased, while no bison responses to wolves were observed in spring–summer. Our work demonstrates the highly dynamic and complex nature of the predator–large prey spatiotemporal game, a key trait‐mediated mechanism by which trophic interactions structure ecological communities.  相似文献   

11.
Prey animals often respond to predators by reducing activity levels. This can produce a trait‐mediated indirect interaction (TMII) between predators and prey resources, whereby reduced foraging by prey in the presence of a predator causes an increase in prey resources. TMIIs play important roles in structuring communities, and it is important to understand factors that determine their strength. One such influence may be behavioural variation in the prey species, with indirect effects of predators being stronger within populations that are more responsive to the presence of a predator. We tested 1) whether the behavioural responsiveness of populations of wood frog tadpoles to predator cues was related to the predation risk in their native ponds, and 2) whether more responsive tadpoles yielded stronger TMIIs. To do this, we 1) measured the activity of tadpoles from 18 populations in mesocosms with and without caged predators, and 2) measured changes in the biomass of periphyton (the tadpoles’ diet) between predator treatments for each population. We found that tadpoles from higher predation risk ponds reduced their time outside refuges more in the presence of predators and tended to move less when visible, suggesting possible local adaptation to predation regimes. Though the presence of predators generally resulted in higher periphyton biomass – a TMII – there was no evidence that the strength of this TMII was affected by variation in tadpole behaviour. Foraging activity and general activity may be decoupled to some extent, enabling high predation risk‐adapted tadpoles to limit the fitness costs of reduced foraging when predators are present.  相似文献   

12.
The mere presence of predators (i.e., predation risk) can alter consumer physiology by restricting food intake and inducing stress, which can ultimately affect prey‐mediated ecosystem processes such as nutrient cycling. However, many environmental factors, including conspecific density, can mediate the perception of risk by prey. Prey conspecific density has been defined as a fundamental feature that modulates perceived risk. In this study, we tested the effects of predation risk on prey nutrient stoichiometry (body and excretion). Using a constant predation risk, we also tested the effects of varying conspecific densities on prey responses to predation risk. To answer these questions, we conducted a mesocosm experiment using caged predators (Belostoma sp.), and small bullfrog tadpoles (Lithobates catesbeianus) as prey. We found that L. catesbeianus tadpoles adjust their body nutrient stoichiometry in response to predation risk, which is affected by conspecific density. We also found that the prey exhibited strong morphological responses to predation risk (i.e., an increase in tail muscle mass), which were positively correlated to body nitrogen content. Thus, we pose the notion that in risky situations, adaptive phenotypic responses rather than behavioral ones might partially explain why prey might have a higher nitrogen content under predation risk. In addition, the interactive roles of conspecific density and predation risk, which might result in reduced perceived risk and physiological restrictions in prey, also affected how prey stoichiometry responded to the fear of predation.  相似文献   

13.
The ability of prey to recognize and adequately respond to predators determines their survival. Predator‐borne, post‐digestion dietary cues represent essential information for prey about the identity and the level of risk posed by predators. The phylogenetic relatedness hypothesis posits that prey should respond strongly to dietary cues from closely related heterospecifics but respond weakly to such cues from distantly related prey, following a hierarchical pattern. While such responses have mostly been observed in prey at their first encounter with predators, whether prey maintain such hierarchical levels of investment through time remains unclear. We investigated this question by exposing Rhacophorus arboreus tadpoles to the non‐consumptive effect of gape‐limited newt predators Cynops pyrrhogaster that were fed one of five prey diets across a gradient of phylogenetic relatedness: frog tadpoles (Rhacophorus arboreus, Rhacophorus schlegelii, Pelophylax nigromaculatus, and Hyla japonica) and medaka fish (Oryzias latipes). Predators’ diet, time, and their interaction significantly influenced tadpole activity level. We found support for the phylogenetic relatedness hypothesis: Investments in defense were stronger to cues from tadpole diets than to cues from fish diet. However, such a hierarchical response was recorded only in the first four days following predator exposure, then gradually disappear by day 8 on which the tadpoles exhibited similar activity level across all predator treatments. The findings suggest that, at least under the threat of gape‐limited predators, prey use phylogenetic information to evaluate risk and appropriately invest in defense during early encounters with predators; however, energy requirements may prevent prey from maintaining a high level of defense over long exposure to predation risk.  相似文献   

14.
The indirect effect of predators on prey behavior, recruitment, and spatial relationships continues to attract considerable attention. However, top predators like sharks or large, mobile teleosts, which can have substantial top–down effects in ecosystems, are often difficult to study due to their large size and mobility. This has created a knowledge gap in understanding how they affect their prey through nonconsumptive effects. Here, we investigated how different functional groups of predators affected potential prey fish populations across various habitats within Biscayne Bay, FL. Using baited remote underwater videos (BRUVs), we quantified predator abundance and activity as a rough proxy for predation risk and analyzed key prey behaviors across coral reef, sea fan, seagrass, and sandy habitats. Both predator abundance and prey arrival times to the bait were strongly influenced by habitat type, with open homogenous habitats receiving faster arrival times by prey. Other prey behaviors, such as residency and risk‐associated behaviors, were potentially driven by predator interaction. Our data suggest that small predators across functional groups do not have large controlling effects on prey behavior or stress responses over short temporal scales; however, habitats where predators are more unpredictable in their occurrence (i.e., open areas) may trigger risk‐associated behaviors such as avoidance and vigilance. Our data shed new light on the importance of habitat and context for understanding how marine predators may influence prey behaviors in marine ecosystems.  相似文献   

15.
When animals detect predators they modify their behavior to avoid predation. However, less is known about whether prey species modify their behavior in response to predator body and behavioral cues. Recent studies indicated that tufted titmice, a small songbird, decreased their foraging behavior and increased their calling rates when they detected a potential predator facing toward a feeder they were using, compared to a potential predator facing away from that feeder. Here, we tested whether related Carolina chickadees, Poecile carolinensis, were also sensitive not just to the presence of a predator model, but to its facial/head orientation. Although chickadees are closely related to titmice, recent studies in different populations suggest chickadees respond to risky contexts involving predators differently than titmice. We conducted two field studies near feeders the birds were exploiting. In Study One, a mask‐wearing human observer stood near the feeder. In Study Two, a model of a domestic cat was positioned near the feeder. In both studies, the potential threatening stimulus either faced toward or faced away from the feeder. Chickadees avoided the feeder more in both studies when the potential predator was present, and showed strongest feeder avoidance when the potential predator faced toward the feeder. Chickadee calling behavior was also affected by the facial orientation of the potential predator in Study 1. These results suggest that, like titmice, chickadees exhibit predation‐risk‐sensitive foraging and calling behavior, in relation to facial and head orientation of potential threats. These small birds seem to attend to the likely visual space of potential predators. Sensitivity to predator cues like behavior and body posture must become more central to our theories and models of anti‐predator behavioral systems.  相似文献   

16.
In many systems, the number of prey killed by predators increases with prey density. This in turn generates higher levels of the indirect signals that prey use to assess predation risk. A model developed by Peacor (2003) showed that prey that respond to predator cues without accounting for conspecific density will consistently over‐ or under‐estimate risk and therefore invest improperly in anti‐predator defense. We tested this model using Rana temporaria tadpoles as prey and Aeshna cyanea dragonfly larvae as predators. As assumed by the model, prey reduced risky activity with increasing concentrations of predator kairomones and increased activity at high prey density. However, prey did not react to changes in cue or density if the ratio of cue‐to‐density remained constant. Prey therefore monitored their per capita risk, strongly supporting Peacor's model.  相似文献   

17.
Over 70% of the droppings of the gleaning bat Otonycteris hemprichii can contain scorpion fragments. Yet, some scorpions found in its desert habitat possess venom of the highest known toxicity, rendering them a very dangerous prey. In this study, we describe how O. hemprichii catches and handles scorpions, quantify its flight and echolocation behaviour in the field, investigate what sensory modality it uses to detect scorpions, and test whether it selects scorpions according to their size or toxicity. We confirmed that O. hemprichi is a whispering bat (approx. 80 dB peSPL) with short, multi-harmonic calls. In a flight room we also confirmed that O. hemprichii detects scorpions by their walking noises. Amplitudes of such noises were measured and they reach the flying bat at or below the level of echoes of the loess substrate. Bats dropped straight onto moving scorpions and were stung frequently even straight in their face. Stings did not change the bats’ behaviour and caused no signs of poisoning. Scorpions were eaten including poison gland and stinger. Bats showed no preference neither for any of the scorpion species nor their size suggesting they are generalist predators with regard to scorpions.  相似文献   

18.
Many prey organisms will approach (inspect) potential predators, primarily to assess local risk of predation. It has been demonstrated that Ostariphysan prey fishes can detect conspecific alarm pheromones in the diet of potential predators and use this chemical information to reduce their risk of predation while still gaining significant benefits associated with predator inspection. We conducted the current study to examine the possible effects of mixed diets on the use of these chemical predator diet cues during inspection visits. Shoals of four glowlight tetras ( Hemigrammus erythrozonus ) were exposed to Jack Dempsey cichlids ( Cichlasoma octofaciatum ) which had been fed diets consisting of: 100% tetras (with alarm pheromone); 75% tetra, 25% swordtail ( Xiphophorus helleri , which lack a recognizable alarm pheromone); 25% tetra, 75% swordtail; or 100% swordtails. Tetras significantly increased their anti-predator behaviour in response to predators fed 100% tetra or the two mixed predator diets, but not when exposed to predators fed a 100% swordtail diet. Likewise, we observed significant differences in inspection behaviour. Tetras took longer to initiate an inspection, inspected in smaller groups and directed a greater proportion of inspection visits towards the tail region of the predator when it had been fed 100% tetra or either of the two mixed prey diets. We found no significant differences in either anti-predator or inspection behaviour among the three diet treatments containing tetras. These data strongly suggest that glowlight tetras are capable of detecting relatively small amounts of conspecific alarm pheromone in the diet of potential predators and that they modify their behaviour based on the presence or absence of these cues.  相似文献   

19.
Antipredator behaviour is an important fitness component in most animals. A co-evolutionary history between predator and prey is important for prey to respond adaptively to predation threats. When non-native predator species invade new areas, native prey may not recognise them or may lack effective antipredator defences. However, responses to novel predators can be facilitated by chemical cues from the predators’ diet. The red swamp crayfish Procambarus clarkii is a widespread invasive predator in the Southwest of the Iberian Peninsula, where it preys upon native anuran tadpoles. In a laboratory experiment we studied behavioural antipredator defences (alterations in activity level and spatial avoidance of predator) of nine anurans in response to P. clarkii chemical cues, and compared them with the defences towards a native predator, the larval dragonfly Aeshna sp. To investigate how chemical cues from consumed conspecifics shape the responses, we raised tadpoles with either a tadpole-fed or starved crayfish, or dragonfly larva, or in the absence of a predator. Five species significantly altered their behaviour in the presence of crayfish, and this was largely mediated by chemical cues from consumed conspecifics. In the presence of dragonflies, most species exhibited behavioural defences and often these did not require the presence of cues from predation events. Responding to cues from consumed conspecifics seems to be a critical factor in facilitating certain behavioural responses to novel exotic predators. This finding can be useful for predicting antipredator responses to invasive predators and help directing conservation efforts to the species at highest risk.  相似文献   

20.
Burrow decorations as antipredatory devices   总被引:1,自引:0,他引:1  
Animal decorations are normally interpreted as signals of quality.In spiders, however, decorations may have different functions,including the attraction of prey to the web or making the spidercryptic to predators. To date, there is scant evidence for thelatter hypothesis. Here we use the burrow-decorating wolf spiderLycosa tarantula to test whether turrets around the burrow serveto prevent burrow invasion and predation from the Occitan scorpionButhus occitanus. We located spiders and scorpions in fieldenclosures and manipulated the presence or absence of decorationsor turrets. We found that the presence of the turret decreasesthe rate of burrow invasion and improves spider survival, possiblybecause the turret makes the burrow cryptic to scorpions. Inaddition, a field survey showed that burrows with larger decorationshad a lower chance of being invaded by scorpions. These resultsprovide evidence that the decoration has an antipredatory functionin nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号