共查询到20条相似文献,搜索用时 15 毫秒
1.
Trans‐generational immune priming (TGIP) describes the transfer of immune stimulation to the next generation. As stress and immunity are closely connected, we here address the question whether trans‐generational effects on immunity and resistance can also be elicited by a nonpathogen stress treatment of parents. General stressors have been shown to induce immunity to pathogens within individuals. However, to our knowledge, it is as of yet unknown whether stress can also induce trans‐generational effects on immunity and resistance. We exposed a parental generation (mothers, fathers, or both parents) of the red flour beetle Tribolium castaneum, a species where TGIP has been previously been demonstrated, to either a brief heat or cold shock and examined offspring survival after bacterial infection with the entomopathogen Bacillus thuringiensis. We also studied phenoloxidase activity, a key enzyme of the insect innate immune system that has previously been demonstrated to be up‐regulated upon TGIP. We quantified parental fecundity and offspring developmental time to evaluate whether trans‐generational priming might have costs. Offspring resistance was found to be significantly increased when both parents received a cold shock. Offspring phenoloxidase activity was also higher when mothers or both parents were cold‐shocked. By contrast, parental heat shock reduced offspring phenoloxidase activity. Moreover, parental cold or heat shock delayed offspring development. In sum, we conclude that trans‐generational priming for resistance could not only be elicited by pathogens or pathogen‐derived components, but also by more general cues that are indicative of a stressful environment. The interaction between stress responses and the immune system might play an important role also for trans‐generational effects. 相似文献
2.
Bacillus thuringiensis (Bt) is a commonly used bioagent in insect pest control. Its toxicity is largely due to the crystalline (Cry) proteins that act selectively on insects and/or nematodes. Some insects, such as the stored product pest Tribolium castaneum, are relatively resistant to any natural Cry toxin. In attempt to find a Cry protein sufficiently toxic to this beetle, we prepared 18 recombinant modifications of Cry3A protoxins and tested them on the penultimate instar larvae of T. castaneum. Larvae were transferred to diet containing 0, 14, 28, 56 or 112 ppm of a Cry protein and their body growth and mortality were evaluated after 10 days. Cumulative mortality reached 25%, and the growth was nearly halted with 112 ppm of the natural Cry3Aa. The mortality was lower and the body weight increased by 15% of the control value in larvae receiving the recombinant Cry3Aa. Several structural derivatives of Cry3A also caused significant growth reduction and enhanced mortality. As both the natural and the recombinant Cry3Aa were more active than any of the tested Cry3A derivatives, we conclude that structural modifications of Cry3Aa are unlikely to increase toxicity to T. castaneum. 相似文献
3.
Ann T. Tate Peter Andolfatto Jeffery P. Demuth Andrea L. Graham 《Molecular ecology》2017,26(14):3794-3807
Many taxa exhibit plastic immune responses initiated after primary microbial exposure that provide increased protection against disease‐induced mortality and the fitness costs of infection. In several arthropod species, this protection can even be passed from parents to offspring through a phenomenon called trans‐generational immune priming. Here, we first demonstrate that trans‐generational priming is a repeatable phenomenon in flour beetles (Tribolium castaneum) primed and infected with Bacillus thuringiensis (Bt). We then quantify the within‐host dynamics of microbes and host physiological responses in infected offspring from primed and unprimed mothers by monitoring bacterial density and using mRNA‐seq to profile host gene expression, respectively, over the acute infection period. We find that priming increases inducible resistance against Bt around a critical temporal juncture where host septicaemic trajectories, and consequently survival, may be determined in unprimed individuals. Our results identify a highly differentially expressed biomarker of priming, containing an EIF4‐e domain, in uninfected individuals, as well as several other candidate genes. Moreover, the induction and decay dynamics of gene expression over time suggest a metabolic shift in primed individuals. The identified bacterial and gene expression dynamics are likely to influence patterns of bacterial fitness and disease transmission in natural populations. 相似文献
4.
Roshan K. Vijendravarma Sunitha Narasimha Sveta Chakrabarti Aurelie Babin Sylvain Kolly Bruno Lemaitre Tadeusz J. Kawecki 《Ecology letters》2015,18(10):1078-1086
The animal gut plays a central role in tackling two common ecological challenges, nutrient shortage and food‐borne parasites, the former by efficient digestion and nutrient absorption, the latter by acting as an immune organ and a barrier. It remains unknown whether these functions can be independently optimised by evolution, or whether they interfere with each other. We report that Drosophila melanogaster populations adapted during 160 generations of experimental evolution to chronic larval malnutrition became more susceptible to intestinal infection with the opportunistic bacterial pathogen Pseudomonas entomophila. However, they do not show suppressed immune response or higher bacterial loads. Rather, their increased susceptibility to P. entomophila is largely mediated by an elevated predisposition to loss of intestinal barrier integrity upon infection. These results may reflect a trade‐off between the efficiency of nutrient extraction from poor food and the protective function of the gut, in particular its tolerance to pathogen‐induced damage. 相似文献
5.
Invasive species cope with novel environments through both phenotypic plasticity and evolutionary change. However, the environmental factors that cause evolutionary divergence in invasive species are poorly understood. We developed predictions for how different life‐history traits, and plasticity in those traits, may respond to environmental gradients in seasonal temperatures, season length and natural enemies. We then tested these predictions in four geographic populations of the invasive cabbage white butterfly (Pieris rapae) from North America. We examined the influence of two rearing temperatures (20 and 26.7 °C) on pupal mass, pupal development time, immune function and fecundity. As predicted, development time was shorter and immune function was greater in populations adapted to longer season length. Also, phenotypic plasticity in development time was greater in regions with shorter growing seasons. Populations differed significantly in mean and plasticity of body mass and fecundity, but these differences were not associated with seasonal temperatures or season length. Our study shows that some life‐history traits, such as development time and immune function, can evolve rapidly in response to latitudinal variation in season length and natural enemies, whereas others traits did not. Our results also indicate that phenotypic plasticity in development time can also diverge rapidly in response to environmental conditions for some traits. 相似文献
6.
Dalial Freitak Toomas Tammaru Siiri‐Lii Sandre Hendrik Meister Toomas Esperk 《Journal of evolutionary biology》2019,32(7):653-665
Seasonal polyphenism constitutes a specific type of phenotypic plasticity in which short‐lived organisms produce different phenotypes in different times of the year. Seasonal generations of such species frequently differ in their overall lifespan and in the values of traits closely related to fitness. Seasonal polyphenisms provide thus excellent, albeit underused model systems for studying trade‐offs between life‐history traits. Here, we compare immunological parameters between the two generations of the European map butterfly (Araschnia levana), a well‐known example of a seasonally polyphenic species. To reveal possible costs of immune defence, we also examine the concurrent differences in several life‐history traits. Both in laboratory experiments and in the field, last instar larvae heading towards the diapause (overwintering) had higher levels of both phenoloxidase (PO) activity and lytic activity than directly developing individuals. These results suggest that individuals from the diapausing generation with much longer juvenile (pupal) period invest more in their immune system than those from the short‐living directly developing generation. The revealed negative correlation between pupal mass and PO activity may be one of the reasons why, in this species, the diapausing generation has a smaller body size than the directly developing generation. Immunological parameters may thus well mediate trade‐offs between body size‐related traits. 相似文献
7.
The red flour beetle, Tribolium castaneum, secretes quinones that control the microbial flora in the surrounding environment. These secretions act as an external immune defence that provides protection against pathogens. At high concentrations, however, these secretions are harmful to the host itself, and selection may thus have optimized the level of expression under natural conditions. Here, we show that the expression of external immunity responded to selection during experimental evolution within a few generations. At the same time, one component of internal immune defence (phenoloxidase activity) was compromised in beetles selected for either high or low external defences. Intriguingly, offspring protection against a natural pathogen was reduced in flour obtained from beetle lines selected for low amounts of secretions. Altogether, this suggests that external and internal immune defences work together efficiently under natural conditions, whereas every manipulation on the side of external immune defence comes with costs to the internal immune defence. 相似文献
8.
The effect of divergent natural selection on the evolution of behavioral traits has long been a focus of behavioral ecologists. Predation, due to its ubiquity in nature and strength as a selective agent, has been considered an important environmental driver of behavior. Predation is often confounded with other environmental factors that could also play a role in behavioral evolution. For example, environments that contain predators are often more ecologically complex and “risky” (i.e., exposed and dangerous). Previous work shows that individuals from risky environments are often more bold, active, and explorative than those from low‐risk environments. To date, most comparative studies of environmentally driven behavioral divergence are limited to comparisons among populations within species that occur in divergent selective environments but neglect comparisons between species following speciation. This limits our understanding of how behavior evolves post‐speciation. The Central American live‐bearing fish genus Brachyrhaphis provides an ideal system for examining the relationship between selective environments and behavior, within and between species. Here, we test for differences in boldness between sister species B. roseni and B. terrabensis that occur in streams with and without piscivorous predators, respectively. We found that species do differ in boldness, with species that occur with predators being bolder than those that do not. Within each species, we found that sexes differed in boldness, with males being bolder than females. We also tested for a relationship between size (a surrogate for metabolic rate) and boldness, but found no size effects. Therefore, sex, not size, affects boldness. These results are consistent with the hypothesis that complex and risky environments favor individuals with more bold behavioral traits, but they are not consistent with the hypothesis that size (and therefore metabolic rate) drives divergence in boldness. Finally, our results provide evidence that behavioral trait divergence continues even after speciation is complete. 相似文献
9.
Individual variation in resource acquisition should have consequences for life‐history traits and trade‐offs between them because such variation determines how many resources can be allocated to different life‐history functions, such as growth, survival and reproduction. Since resource acquisition can vary across an individual's life cycle, the consequences for life‐history traits and trade‐offs may depend on when during the life cycle resources are limited. We tested for differential and/or interactive effects of variation in resource acquisition in the burying beetle Nicrophorus vespilloides. We designed an experiment in which individuals acquired high or low amounts of resources across three stages of the life cycle: larval development, prior to breeding and the onset of breeding in a fully crossed design. Resource acquisition during larval development and prior to breeding affected egg size and offspring survival, respectively. Meanwhile, resource acquisition at the onset of breeding affected size and number of both eggs and offspring. In addition, there were interactive effects between resource acquisition at different stages on egg size and offspring survival. However, only when females acquired few resources at the onset of breeding was there evidence for a trade‐off between offspring size and number. Our results demonstrate that individual variation in resource acquisition during different stages of the life cycle has important consequences for life‐history traits but limited effects on trade‐offs. This suggests that in species that acquire a fixed‐sized resource at the onset of breeding, the size of this resource has larger effects on life‐history trade‐offs than resources acquired at earlier stages. 相似文献
10.
Yixin H. Ye Stephen F. Chenoweth Alison M. Carrasco Scott L. Allen Francesca D. Frentiu Andrew F. van den Hurk Nigel W. Beebe Elizabeth A. McGraw 《Evolution; international journal of organic evolution》2016,70(11):2459-2469
Dengue fever is the most common arboviral disease worldwide. It is caused by dengue viruses (DENV) and the mosquito Aedes aegypti is its primary vector. One of the most powerful determinants of a mosquito's ability to transmit DENV is the length of the extrinsic incubation period (EIP), the time it takes for a virus to be transmitted by a mosquito after consuming an infected blood meal. Here, we repeatedly measured DENV load in the saliva of individual mosquitoes over their lifetime and used this in combination with a breeding design to determine the extent to which EIP might respond to the evolutionary forces of drift and selection. We demonstrated that genetic variation among mosquitoes contributes significantly to transmission potential and length of EIP. We reveal that shorter EIP is genetically correlated with reduced mosquito lifespan, highlighting negative life‐history consequences for virus‐infected mosquitoes. This work highlights the capacity for local genetic variation in mosquito populations to evolve and to dramatically affect the nature of human outbreaks. It also provides the impetus for isolating mosquito genes that determine EIP. More broadly, our dual experimental approach offers new opportunities for studying the evolutionary potential of transmission traits in other vector/pathogen systems. 相似文献
11.
Indrikis Krams Sanita Kecko Inna Inashkina Giedrius Trakimas Ronalds Krams Didzis Elferts Jolanta Vrublevska Priit Jõers Markus J. Rantala Severi Luoto Jorge Contreras‐Garduño Līga Jankevica Laila Meija Tatjana Krama 《Entomologia Experimentalis et Applicata》2017,165(2-3):129-137
Predator‐prey interactions are an important evolutionary force affecting the immunity of the prey. Parasitoids and mites pierce the cuticle of their prey, which respond by activating their immune system against predatory attacks. Immunity is a costly function for the organism, as it often competes with other life‐history traits for limited nutrients. We tested whether the expression of antimicrobial peptides (AMP) of the larvae of the greater wax moth Galleria mellonella (L.) (Lepidoptera: Pyralidae) changes as a consequence of insertion of a nylon monofilament, which acts like a synthetic parasite. The treatment was done for larvae grown on a high‐quality vs. a low‐quality diet. The expression of Gloverin and 6‐tox were upregulated in response to the insertion of the nylon monofilament. The expression of 6‐tox, Cecropin‐D, and Gallerimycin were significantly higher in the ‘low‐quality diet’ group than in the ‘high‐quality diet’ group. As food quality seems to affect AMP gene expression in G. mellonella larvae, it should always be controlled for in studies on bacterial and fungal infections in G. mellonella. 相似文献
12.
Lyimo IN Keegan SP Ranford-Cartwright LC Ferguson HM 《Journal of evolutionary biology》2012,25(3):452-460
We investigated the fitness consequences of specialization in an organism whose host choice has an immense impact on human health: the African malaria vector Anopheles gambiae s.s. We tested whether this mosquito’s specialism on humans can be attributed to the relative fitness benefits of specialist vs. generalist feeding strategies by contrasting their fecundity and survival on human‐only and mixed host diets consisting of blood meals from humans and animals. When given only one blood meal, An. gambiae s.s. survived significantly longer on human and bovine blood, than on canine or avian blood. However, when blood fed repeatedly, there was no evidence that the fitness of An. gambiae s.s. fed a human‐only diet was greater than those fed generalist diets. This suggests that the adoption of generalist host feeding strategies in An. gambiae s.s. is not constrained by intraspecific variation in the resource quality of blood from other available host species. 相似文献
13.
Colin D. McClure Weihao Zhong Vicky L. Hunt Fiona M. Chapman Fiona V. Hill Nicholas K. Priest 《Evolution; international journal of organic evolution》2014,68(8):2225-2233
Many have argued that we may be able to extend life and improve human health through hormesis, the beneficial effects of low‐level toxins and other stressors. But, studies of hormesis in model systems have not yet established whether stress‐induced benefits are cost free, artifacts of inbreeding, or come with deleterious side effects. Here, we provide evidence that hormesis results in trade‐offs with immunity. We find that a single topical dose of dead spores of the entomopathogenic fungus, Metarhizium robertsii, increases the longevity of the fruit fly, Drosophila melanogaster, without significant decreases in fecundity. We find that hormetic benefits of pathogen challenge are greater in lines that lack key components of antifungal immunity (Dif and Turandot M). And, in outbred fly lines, we find that topical pathogen challenge enhances both survival and fecundity, but reduces ability to fight off live infections. The results provide evidence that hormesis is manifested by stress‐induced trade‐offs with immunity, not cost‐free benefits or artifacts of inbreeding. Our findings illuminate mechanisms underlying pathogen‐induced life‐history trade‐offs, and indicate that reduced immune function may be an ironic side effect of the “elixirs of life.” 相似文献
14.
Anne Peters Kaspar Delhey Shinichi Nakagawa Anne Aulsebrook Simon Verhulst 《Ecology letters》2019,22(10):1709-1722
Immunosenescence, the decline in immune defense with age, is an important mortality source in elderly humans but little is known of immunosenescence in wild animals. We systematically reviewed and meta‐analysed evidence for age‐related changes in immunity in captive and free‐living populations of wild species (321 effect sizes in 62 studies across 44 species of mammals, birds and reptiles). As in humans, senescence was more evident in adaptive (acquired) than innate immune functions. Declines were evident for cell function (antibody response), the relative abundance of naïve immune cells and an in vivo measure of overall immune responsiveness (local response to phytohaemagglutinin injection). Inflammatory markers increased with age, similar to chronic inflammation associated with human immunosenescence. Comparisons across taxa and captive vs free‐living animals were difficult due to lack of overlap in parameters and species measured. Most studies are cross‐sectional, which yields biased estimates of age‐effects when immune function co‐varies with survival. We therefore suggest longitudinal sampling approaches, and highlight techniques from human cohort studies that can be incorporated into ecological research. We also identify avenues to address predictions from evolutionary theory and the contribution of immunosenescence to age‐related increases in disease susceptibility and mortality. 相似文献
15.
J. A. H. Crawley H. S. Mumby S. N. Chapman M. Lahdenperä K. U. Mar W. Htut A. Thura Soe H. H. Aung V. Lummaa 《Journal of evolutionary biology》2017,30(10):1836-1845
The limited availability of resources is predicted to impose trade‐offs between growth, reproduction and self‐maintenance in animals. However, although some studies have shown that early reproduction suppresses growth, reproduction positively correlates with size in others. We use detailed records from a large population of semi‐captive elephants in Myanmar to assess the relationships between size (height and weight), reproduction and survival in female Asian elephants, a species characterized by slow, costly life history. Although female height gain during the growth period overlapped little with reproductive onset in the population, there was large variation in age at first reproduction and only 81% of final weight had been reached by peak age of reproduction at the population level (19 years). Those females beginning reproduction early tended to be taller and lighter later in life, although these trends were not significant. We found that taller females were more likely to have reproduced by a given age, but such effects diminished with age, suggesting there may be a size threshold to reproduction which is especially important in young females. Because size was not linked with female survival during reproductive ages, the diminishing effect of height on reproduction with age is unlikely to be due to biased survival of larger females. We conclude that although reproduction may not always impose significant costs on growth, height may be a limiting factor to reproduction in young female Asian elephants, which could have important implications considering their birth rates are low and peak reproduction is young – 19 years in this population. 相似文献
16.
Abstract 1. In animals with a complex life cycle, larval stressors may carry over to the adult stage. Carry‐over effects not mediated through age and size at metamorphosis have rarely been studied. The present study focuses on the poorly documented immune costs of short‐term food stress both in the larval stage and after metamorphosis in the adult stage. 2. The present study quantified immune function [number of haemocytes, activity of prophenoloxidase (proPO) and phenoloxidase (PO)] in an experiment where larvae of the damselfly Lestes viridis were exposed to a transient starvation period. 3. Directly after starvation, immune variables were reduced in starved larvae. Levels of proPO and PO remained low after starvation, even after metamorphosis. In contrast, haemocyte numbers were fully compensated by the end of the larval stage, yet were lower in previously starved animals after metamorphosis. This can be explained as a cost of the observed compensatory growth after starvation. Focusing only on potential costs of larval stressors within the larval stage may therefore be misleading. 4. The here‐identified immunological cost in the adult stage of larval short‐term food stress and associated compensatory growth strongly indicates that physiological costs may explain hidden carry‐over effects bridging metamorphosis. This adds to the increasing awareness that the larval and adult stages in animals with a complex life cycle should be jointly studied, as trade‐offs may span metamorphosis. 相似文献
17.
Defence against pathogenic infection can take two forms: resistance and tolerance. Resistance is the ability of the host to limit a pathogen burden, whereas tolerance is the ability to limit the negative consequences of infection at a given level of infection intensity. Evolutionarily, a tolerance strategy that is independent of resistance could allow the host to avoid mounting a costly immune response and, theoretically, to avoid a co‐evolutionary arms race between pathogen virulence and host resistance. Biomedically, understanding the mechanisms of tolerance and how they relate to resistance could potentially yield treatment strategies that focus on health improvement instead of pathogen elimination. To understand the impact of tolerance on host defence and identify genetic variants that determine host tolerance, we defined genetic variation in tolerance as the residual deviation from a binomial regression of fitness under infection against infection intensity. We then performed a genomewide association study to map the genetic basis of variation in resistance to and tolerance of infection by the bacterium Providencia rettgeri. We found a positive genetic correlation between resistance and tolerance, and we demonstrated that the level of resistance is highly predictive of tolerance. We identified 30 loci that predict tolerance, many of which are in genes involved in the regulation of immunity and metabolism. We used RNAi to confirm that a subset of mapped genes have a role in defence, including putative wound repair genes grainy head and debris buster. Our results indicate that tolerance is not an independent strategy from resistance, but that defence arises from a collection of physiological processes intertwined with canonical immunity and resistance. 相似文献
18.
Kelsey M. Yule Jennifer A. H. Koop Nicolas M. Alexandre Lauren R. Johnston Noah K. Whiteman 《Molecular ecology》2016,25(14):3332-3343
Parasites are among the most diverse groups of life on Earth, yet complex natural histories often preclude studies of their speciation processes. The biology of parasitic plants facilitates in situ collection of data on both genetic structure and the mechanisms responsible for that structure. Here, we studied the role of mating, dispersal and establishment in host race formation of a parasitic plant. We investigated the population genetics of a vector‐borne desert mistletoe (Phoradendron californicum) across two legume host tree species (Senegalia greggii and Prosopis velutina) in the Sonoran desert using microsatellites. Consistent with host race formation, we found strong host‐associated genetic structure in sympatry, little genetic variation due to geographic site and weak isolation by distance. We hypothesize that genetic differentiation results from differences in the timing of mistletoe flowering by host species, as we found initial flowering date of individual mistletoes correlated with genetic ancestry. Hybrids with intermediate ancestry were detected genetically. Individuals likely resulting from recent, successful establishment events following dispersal between the host species were detected at frequencies similar to hybrids between host races. Therefore, barriers to gene flow between the host races may have been stronger at mating than at dispersal. We also found higher inbreeding and within‐host individual relatedness values for mistletoes on the more rare and isolated host species (S. greggii). Our study spanned spatial scales to address how interactions with both vectors and hosts influence parasitic plant structure with implications for parasite virulence evolution and speciation. 相似文献
19.
《Evolutionary Applications》2017,10(9):890-896
Organisms are expected to respond to alterations in their survival by evolutionary changes in their life history traits. As agriculture and aquaculture have become increasingly intensive in the past decades, there has been growing interest in their evolutionary effects on the life histories of agri‐ and aquacultural pests, parasites, and pathogens. In this study, we used salmon lice (Lepeophtheirus salmonis) to explore how modern farming might have affected life history evolution in parasites. We infected salmon hosts with lice from either farmed or unfarmed locations, and monitored life history traits of those parasites in laboratory conditions. Our results show that compared to salmon lice from areas unaffected by salmon farming, those from farmed areas produced more eggs in their first clutch, and less eggs later on; they achieved higher infestation intensities in early adulthood, but suffered higher adult mortality. These results suggest that salmon lice on farms may have been selected for increased investment in early reproduction, at the expense of later fecundity and survival. This call for further empirical studies of the extent to which farming practices may alter the virulence of agricultural parasites. 相似文献
20.
Heat and desiccation are the predominant factors affecting inactivation of Bacillus licheniformis and Bacillus thuringiensis spores during simulated composting
下载免费PDF全文

K. Stanford A. Harvey R. Barbieri S. Xu T. Reuter K.K. Amoako L.B. Selinger T.A. McAllister 《Journal of applied microbiology》2016,120(1):90-98