首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 7 毫秒
1.
Movement of fluorescein into isolated caryopses of wheat and barley   总被引:2,自引:0,他引:2  
Abstract. The movement of fluorescein, a symplastic fluorescent tracer, into isolated caryopses of wheat and barley is described. The dye followed the pathway to the endosperm which has been proposed previously from anatomical studies, namely a movement from the phloem, through cells of the pigment strand and nucellar projection, followed by a radial spread of the dye from the endosperm cavity into the starchy endosperm. By contrast, the fluorochromes calcofluor white M2R and ANS remained confined to the apoplast and failed to cross the 'xylem discontinuity' at the base of the caryopses.  相似文献   

2.
低磷和干旱胁迫对小麦生长发育影响的研究初探   总被引:4,自引:1,他引:4  
研究了低磷和干旱胁迫对小麦(Triticum aestivum L.)生长发育的影响。结果表明,低磷胁迫能显著降低小麦的分蘖数、叶片相对含水量和叶绿素含量,进而抑制小麦的生长发育,降低其生物产量和经济产量,不耐低磷品种中国春受影响的程度要大于耐低磷品种烟中144。在相同条件下,干旱能够强化磷胁迫效应,表现出明显的胁迫叠加现象。  相似文献   

3.
Flour colour, kernel hardness, grain protein content and wet gluten content are important quality properties that determine end use in bread wheat. Here, a wheat 90K genotyping assay was used for a genome‐wide association study (GWAS) of the six quality‐related traits in Chinese wheat cultivars in eight environments over four years. A total of 846 significant single nucleotide polymorphisms (SNPs) were identified, explaining approximately 30% of the phenotypic variation on average, and 103 multienvironment‐significant SNPs were detected in more than four environments. Quantitative trait loci (QTL) mapping in the biparent population confirmed some important SNP loci. Moreover, it was determined that some important genes were associated with the six quality traits, including some known functional genes and annotated unknown functional genes. Of the annotated unknown functional genes, it was verified that TaRPP13L1 was associated with flour colour. Wheat cultivars or lines with TaRPP13L1‐B1a showed extremely significantly higher flour redness and lower yellowness than those with TaRPP13L1‐B1b in the Chinese wheat natural population and the doubled haploid (DH) population. Two tetraploid wheat lines with premature stop codons of the TaRPP13L1 gene mutagenized by ethyl methanesulfonate (EMS) showed extremely significantly higher flour redness and lower yellowness than wild type. Our data suggest that the TaRPP13L1 gene plays an important role in modulating wheat flour colour. This study provides useful information for further dissection of the genetic basis of flour colour and also provides valuable genes or genetic loci for marker‐assisted selection to improve the process of breeding quality wheat in China.  相似文献   

4.
Greater availability of leaf dark respiration (Rdark) data could facilitate breeding efforts to raise crop yield and improve global carbon cycle modelling. However, the availability of Rdark data is limited because it is cumbersome, time consuming, or destructive to measure. We report a non‐destructive and high‐throughput method of estimating Rdark from leaf hyperspectral reflectance data that was derived from leaf Rdark measured by a destructive high‐throughput oxygen consumption technique. We generated a large dataset of leaf Rdark for wheat (1380 samples) from 90 genotypes, multiple growth stages, and growth conditions to generate models for Rdark. Leaf Rdark (per unit leaf area, fresh mass, dry mass or nitrogen, N) varied 7‐ to 15‐fold among individual plants, whereas traits known to scale with Rdark, leaf N, and leaf mass per area (LMA) only varied twofold to fivefold. Our models predicted leaf Rdark, N, and LMA with r2 values of 0.50–0.63, 0.91, and 0.75, respectively, and relative bias of 17–18% for Rdark and 7–12% for N and LMA. Our results suggest that hyperspectral model prediction of wheat leaf Rdark is largely independent of leaf N and LMA. Potential drivers of hyperspectral signatures of Rdark are discussed.  相似文献   

5.
孙琴  王晓蓉  袁信芳  丁士明 《生态学报》2004,24(12):2804-2809
采用溶液培养方式 ,研究了有机酸存在下小麦体内 Cd的生物毒性和植物络合素 (PCs)合成的相关关系 ,试图寻求一种与小麦体内 Cd的生物毒性高度相关的评价指标。结果显示 ,Cd胁迫对小麦产生明显的毒害效应并诱导小麦根系内 PCs的大量合成。EDTA、DTPA、柠檬酸、苹果酸和草酸的适量供应可不同程度减轻或消除 Cd的生物毒性 ,其强弱顺序为 EDTA >DTPA 柠檬酸 >苹果酸≈草酸。与此同时 ,小麦根系内 PCs的诱导量也有明显下降 ,与 Cd的生物毒性保持一定的线性关系 ,且在EDTA、DTPA和柠檬酸供应下尤为显著。表明 PCs可以作为一项敏感的生化指标 (biochem ical indicator)用来评价和预测环境中 Cd的污染 ,并有望成为重金属生物有效性评价系统中一种新的补充方法  相似文献   

6.
Pierre Martre  Daniel Wallach  Senthold Asseng  Frank Ewert  James W. Jones  Reimund P. Rötter  Kenneth J. Boote  Alex C. Ruane  Peter J. Thorburn  Davide Cammarano  Jerry L. Hatfield  Cynthia Rosenzweig  Pramod K. Aggarwal  Carlos Angulo  Bruno Basso  Patrick Bertuzzi  Christian Biernath  Andrew J. Challinor  Jordi Doltra  Sebastian Gayler  Richie Goldberg  Robert F. Grant  Lee Heng  Josh Hooker  Leslie A. Hunt  Joachim Ingwersen  Roberto C. Izaurralde  Kurt Christian Kersebaum  Christoph Müller  Soora Naresh Kumar  Claas Nendel  Garry O'leary  Jørgen E. Olesen  Tom M. Osborne  Taru Palosuo  Eckart Priesack  Dominique Ripoche  Mikhail A. Semenov  Iurii Shcherbak  Pasquale Steduto  Claudio O. Stöckle  Pierre Stratonovitch  Thilo Streck  Iwan Supit  Fulu Tao  Maria Travasso  Katharina Waha  Jeffrey W. White  Joost Wolf 《Global Change Biology》2015,21(2):911-925
Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24–38% for the different end‐of‐season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in‐season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e‐mean) or median (e‐median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e‐median ranked first in simulating measured GY and third in GPC. The error of e‐mean and e‐median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.  相似文献   

7.
Bread wheat is a leading cereal crop worldwide. Limited amount of superior allele loci restricted the progress of molecular improvement in wheat breeding. Here, we revealed new allelic variation distribution for 13 yield‐related traits in series of genome‐wide association studies (GWAS) using the wheat 90K genotyping assay, characterized in 163 bread wheat cultivars. Agronomic traits were investigated in 14 environments at three locations over 3 years. After filtering SNP data sets, GWAS using 20 689 high‐quality SNPs associated 1769 significant loci that explained, on average, ~20% of the phenotypic variation, both detected already reported loci and new promising genomic regions. Of these, repetitive and pleiotropic SNPs on chromosomes 6AS, 6AL, 6BS, 5BL and 7AS were significantly linked to thousand kernel weight, for example BS00021705_51 on 6BS and wsnp_Ex_c32624_41252144 on 6AS, with phenotypic variation explained (PVE) of ~24%, consistently identified in 12 and 13 of the 14 environments, respectively. Kernel length‐related SNPs were mainly identified on chromosomes 7BS, 6AS, 5AL and 5BL. Plant height‐related SNPs on chromosomes 4DS, 6DL, 2DS and 1BL were, respectively, identified in more than 11 environments, with averaged PVE of ~55%. Four SNPs were confirmed to be important genetic loci in two RIL populations. Based on repetivity and PVE, a total of 41 SNP loci possibly played the key role in modulating yield‐related traits of the cultivars surveyed. Distribution of superior alleles at the 41 SNP loci indicated that superior alleles were getting popular with time and modern cultivars had integrated many superior alleles, especially for peduncle length‐ and plant height‐related superior alleles. However, there were still 19 SNP loci showing less than percentages of 50% in modern cultivars, suggesting they should be paid more attention to improve yield‐related traits of cultivars in the Yellow and Huai wheat region. This study could provide useful information for dissection of yield‐related traits and valuable genetic loci for marker‐assisted selection in Chinese wheat breeding programme.  相似文献   

8.
沈玉芳    李世清    邵明安 《生态学报》2008,28(6):2698-2698~2706
以肥熟土垫旱耕人为土为供试土样,用分层土柱试验法研究了不同层次水分、氮、磷组合对冬小麦(Triticum aestivum L.)氮磷养分有效性和产量效应的影响.结果表明,不同土层水肥处理的氮磷养分有效性和产量效应差异显著.氮素养分有效性在4.73%~41.19%之间,磷素养分有效性在4.11%~13.58%之间.对氮素养分有效性,单施氮整体湿润时(0~90cm土层湿润)较上干下湿(0~30cm土层干旱胁迫,30~90cm土层湿润)低4.87%,而氮磷配施在整体湿润时较上干下湿高6.38%,差异均达显著水平;对磷素养分有效性,氮磷配施时,在整体湿润时较上干下湿增加5.01T(p<0.05).从不同施肥土层看,氮素养分有效性均以0~90cm土层施肥处理最高;对氮磷配施处理,在上干下湿时分别比0~30cm、30~60cm和60~90cm土层施肥处理高9.5%、10.1%和20.2个%;对磷素养分有效性,整体湿润处理,以0~30cm土层施肥显著高于其它土层施肥处理.单施氮或磷,上干下湿时氮磷养分的产量效应均高于整体湿润处理,但氮磷配施时均以整体湿润处理较高;从不同土层施肥看,氮素养分的产量效应以0~90cm土层施肥最高;磷素养分的产量效应则表现为0~90cm与0~30cm土层施肥处理显著高于30~60cm和60~90cm土层施肥处理.分析0~90cm土层残留硝态氮和有效磷累积量可以看出,不同处理土壤残留硝态氮含量存在显著差异,上干下湿时CK、单施氮、单施磷和氮磷配施土壤残留硝态氮分别比整体湿润相应施肥处理增加125.8%、20.1%、21.9%和2.1%;不同处理有效磷差异性不及硝态氮明显.整体看,在两种水分状况下,均以0~90cm和0~30cm土层施肥有利于提高氮磷养分对冬小麦的有效性和产量效应,减少硝态氮和有效磷在土壤中的残留累积.考虑到生产上的可操作性,仍以施入0~30cm土层最适,说明即使在上干下湿情况下,保证上层有效养分供应仍具重要作用.  相似文献   

9.
Yanai  Junta  Robinson  David  Young  Iain M.  Kyuma  Kazutake  Kosaki  Takashi 《Plant and Soil》1998,202(2):263-270
Adding nitrogen (N) fertilizers to soil affects not only the concentration in the soil solution of the added ions, but also those of other ions already present in the soil. This secondary effect is caused by ion exchange and electrochemical equilibrium processes. We studied how different N fertilizers affected the chemical composition of the soil solution over time, and how this related to nutrient uptake by wheat. Soil was fertilized either with (NH4)2SO4 or Ca(NO3)2, or no N was added. Each of these N treatments was either planted or not with spring wheat (Triticum aestivum L.). Soil solutions were collected repeatedly with looped hollow fiber samplers from the root zone in situ, six times during a 50-day pot experiment. Plants were harvested five times, and their nutrient contents determined. In the soil solution, NO3- was significantly less concentrated if (NH4)2SO4, rather than Ca(NO3)2 was applied, until after net nitrification had ended on day 20. In contrast, Ca2+, Mg2+ and K+ were significantly more concentrated in the former treatment. This was probably caused by the greater concentration of anions that resulted from nitrification. P was always very dilute and unaffected by the form of N fertilizer. The form of N fertilizer had no significant effect on plant growth and nutrient uptake. The likely contribution of mass flow of the soil solution in supplying Ca, Mg and N to the plants was greatest when (NH4)2SO4 was supplied. The supply of K and P was unaffected by N fertilizer. The potential for N leaching loss was lower with (NH4)2SO4 than with Ca(NO3)2, especially up to day 20. However, the potential for cations leaching loss was greater in the (NH4)2SO4 treatment. This suggests that there is only a limited advantage in fertilizing with (NH4)2SO4 to reduce the total loss of nutrients from soil.  相似文献   

10.
Gas exchange and water relations were evaluated under full‐season in situ infrared (IR) warming for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semiarid desert region of the southwest USA. A temperature free‐air controlled enhancement (T‐FACE) apparatus utilizing IR heaters maintained canopy air temperature above 3.0 m Heated plots of wheat by 1.3 and 2.7 °C (0.2 and 0.3 °C below the targeted set‐points of Reference plots with dummy heaters) during daytime and nighttime, respectively. Control plots had no apparatus. Every 6 weeks during 2007–2009 wheat was sown under the three warming treatments (i.e., Control, Heated, Reference) in three replicates in a 3 × 3 Latin square (LSQ) design on six plantings during 4 months (i.e., January, March, September, December), or in a natural temperature variation treatment (i.e., Control) in three replicates in a randomized complete block (RCB) design on nine plantings during 7 months (i.e., January, February, April, June, July, August, October). Soil temperature (Ts) and volumetric soil‐water content (θs) were 1.3 °C warmer and 14% lower in Heated compared with Reference plots, respectively. Other than a 1% shading effect, no artifacts on gas exchange or water relations were associated with the IR warming apparatus. IR warming increased carbon gain characteristic of an increase in metabolic rates to higher temperature that may have been attributed to the well‐watered wheat crop and the supplemental irrigation that minimized plant‐to‐air water vapor pressure differences between IR‐warmed and nonwarmed plots. Nevertheless, seasonal oscillations in the IR warming response on carbon gain occurred. IR warming decreased leaf water status and provided thermal protection during freeze events. IR warming is an effective experimental methodology to investigate the impact of global climate change on agronomic cropping and natural ecosystems to a wide range of natural and artificially imposed air temperatures.  相似文献   

11.
12.
以小麦(Triticum aestivum L.)秸秆基质(发酵)为主,按不同比例分别添加蛭石、珍珠岩和草炭,配制10种复合基质;以不含小麦秸秆基质的复合基质为对照,对各基质的基本理化性状进行了分析和比较,并研究了不同基质对黄瓜(Cucumis sativus L.)幼苗生长、叶片叶绿素含量和光合参数的影响。结果显示:不同基质的理化指标有明显差异,小麦秸秆基质与蛭石、珍珠岩和草炭混配均降低或显著降低了基质的容重、总孔隙度、持水孔隙度、水气比、小颗粒含量、pH值和电导率,提高了通气孔隙度以及大、中颗粒的含量。按V(小麦秸秆基质)∶V(蛭石)∶V(草炭)=50∶25∶25的比例配制的复合基质T9的容重、总孔隙度、通气孔隙度、持水孔隙度、水气比和电导率分别为0.33g.cm-3、68.1%、15.3%、52.8%、3.45和3.91 mS.cm-1,理化性状最佳,具有良好的吸水和保水性能。总体上看,随复合基质中小麦秸秆基质比例的降低,黄瓜幼苗的株高、茎粗、根总长、根总体积、平均单根直径和根尖总数、生物量和壮苗指数以及叶片的叶绿素含量均呈上升趋势;复合基质中小麦秸秆基质比例较高,黄瓜叶片的净光合速率、气孔导度和蒸腾速率均较低,但与对照相比,不同基质对叶片胞间CO2浓度及水分利用效率无显著影响。在复合基质T9中黄瓜幼苗的这些生长指标、壮苗指数以及叶片叶绿素含量和光合参数总体上高于或显著高于对照和其他复合基质,生长良好。结果表明:复合基质T9较适合黄瓜幼苗的生长发育,可作为黄瓜育苗基质。  相似文献   

13.
Wheat is sensitive to high temperatures, but the spatial and temporal variability of high temperature and its impact on yield are often not known. An analysis of historical climate and yield data was undertaken to characterize the spatial and temporal variability of heat stress between heading and maturity and its impact on wheat grain yield in China. Several heat stress indices were developed to quantify heat intensity, frequency, and duration between heading and maturity based on measured maximum temperature records of the last 50 years from 166 stations in the main wheat‐growing region of China. Surprisingly, heat stress between heading and maturity was more severe in the generally cooler northern wheat‐growing regions than the generally warmer southern regions of China, because of the delayed time of heading with low temperatures during the earlier growing season and the exposure of the post‐heading phase into the warmer part of the year. Heat stress between heading and maturity has increased in the last decades in most of the main winter wheat production areas of China, but the rate was higher in the south than in the north. The correlation between measured grain yields and post‐heading heat stress and average temperature were statistically significant in the entire wheat‐producing region, and explained about 29% of the observed spatial and temporal yield variability. A heat stress index considering the duration and intensity of heat between heading and maturity was required to describe the correlation of heat stress and yield variability. Because heat stress is a major cause of yield loss and the number of heat events is projected to increase in the future, quantifying the future impact of heat stress on wheat production and developing appropriate adaptation and mitigation strategies are critical for developing food security policies in China and elsewhere.  相似文献   

14.
Abstract

Phosphorus (P) is the most important macronutrient next to nitrogen for the growth and development of plants. But often unavailable for plants because of its high reactivity with many soil constituents. Thus, the use of phosphate solubilizing bacteria (PSBs) as biofertilizers seems to be an effective way to resolve the soluble phosphorus availability in soil. The present study was conducted to isolate and characterize rock PSB associated with the rhizosphere of wheat (Triticum aestivum L.) from fourteen different wheat-growing sites of Meknes region in Morocco. A total of one hundred ninety-eight (198) rock PSBs were isolated employing NBRIP medium amended with rock phosphate (RP), out of which five strains (A17, A81, B26, B106, and B107) were selected for their strong ability to dissolve RP and were tested in vitro for plant growth-promoting (PGP) traits including production of indole acetic acid (IAA), siderophores, hydrogen cyanide (HCN), and antifungal activity, as well as their response to the effect of extrinsic and intrinsic stress. The 16S rRNA gene sequencing and phylogenetic analysis identified these isolates belong to four genera, Pantoea, Pseudomonas, Serratia, and Enterobacter. The phosphate solubilization index (SI) of selected isolates ranged between 2.3 and 2.7, and the amount of solubilized phosphorus in the liquid medium varied from 59.1 to 90.2 µg mL?1. HPLC analysis revealed that all the selected isolates produced multiple organic acids (oxalic, citric, gluconic succinic, and fumaric acids) from glucose under aerobic conditions. Except for the A81 strain, all selected isolates were able to produce IAA ranging between 2.9 and 21.2 µg mL?1. The isolates A17, B26, and B107 showed the ability to produce siderophores ranging from 79.3 to 20.8% siderophore units. Only two strains (A17 and B26) were able to produce HCN. All selected isolates showed good resistance against different environmental stresses like 10–50?°C temperature, 0.5–2?g L?1 salt concentration and 4.5–9?pH range, and against different antibiotics. The antagonistic effect showed that among the five selected strains, only two strains (B26 and A17) were able to suppress the growth of tested fungi. This study clearly indicates that our selected rock PSBs can be used as biofertilizers for grain crops after studying their interaction with the host crop and field evaluation.  相似文献   

15.
16.
Keyword index     
《Journal of neurochemistry》2002,83(6):1543-1546
  相似文献   

17.
Keyword index     
《Journal of neurochemistry》2003,87(6):1579-1582
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号