首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Virulence-associated type III secretion systems (T3SS) are utilized by Gram negative bacterial pathogens for injection of effector proteins into eukaryotic host cells. The transmembrane export apparatus at the core of T3SS is composed of a unique helical complex of the hydrophobic proteins SctR, SctS, SctT, and SctU. These components comprise a number of highly conserved charged residues within their hydrophobic domains. The structure of the closed state of the core complex SctR5S4T1 revealed that several of these residues form inter- and intramolecular salt bridges, some of which have to be broken for pore opening. Mutagenesis of individual residues was shown to compromise assembly or secretion of both, the virulence-associated and the related flagellar T3SS. However, the exact role of these conserved charged residues in the assembly and function of T3SS remains elusive. Here we performed an in-depth mutagenesis analysis of these residues in the T3SS of Salmonella Typhimurium, coupled to blue native PAGE, in vivo photocrosslinking and luciferase-based secretion assays. Our data show that these conserved salt bridges are not critical for assembly of the respective protein but rather facilitate the incorporation of the following subunit into the assembling complex. Our data also indicate that these conserved charged residues are critical for type III-dependent secretion and reveal a functional link between SctSE44 and SctTR204 and the cytoplasmic domain of SctU in gating the T3SS injectisome. Overall, our analysis provides an unprecedented insight into the delicate requirements for the assembly and function of the machinery at the core of T3SS.  相似文献   

2.
Wood SE  Jin J  Lloyd SA 《Journal of bacteriology》2008,190(12):4252-4262
Pathogenic yersiniae utilize a type III secretion system to inject antihost factors, called Yops, directly into the cytosol of eukaryotic cells. The Yops are injected via a needle-like structure, comprising the YscF protein, on the bacterial surface. While the needle is being assembled, Yops cannot be secreted. YscP and YscU switch the substrate specificity of the secretion system to enable Yop export once the needle attains its proper length. Here, we demonstrate that the inner rod protein YscI plays a critical role in substrate specificity switching. We show that YscI is secreted by the type III secretion system and that YscI secretion by a yscP mutant is abnormally elevated. Furthermore, we show that mutations in the cytoplasmic domain of YscU reduce YscI secretion by the yscP null strain. We also demonstrate that mutants expressing one of three forms of YscI (those with mutations Q84A, L87A, and L96A) secrete substantial amounts of Yops yet exhibit severe defects in needle formation. In the absence of YscP, mutants with the same changes in YscI assemble needles but are unable to secrete Yops. Together, these results suggest that the formation of the inner rod, not the needle, is critical for substrate specificity switching and that YscP and YscU exert their effects on substrate export by controlling the secretion of YscI.  相似文献   

3.
The type III secretion system (T3SS) is essential in the pathogenesis of many bacteria. The inner rod is important in the assembly of the T3SS needle complex. However, the atomic structure of the inner rod protein is currently unknown. Based on computational methods, others have suggested that the Salmonella inner rod protein PrgJ is highly helical, forming a folded 3 helix structure. Here we show by CD and NMR spectroscopy that the monomeric form of PrgJ lacks a tertiary structure, and the only well-structured part of PrgJ is a short α-helix at the C-terminal region from residues 65-82. Disruption of this helix by glycine or proline mutation resulted in defective assembly of the needle complex, rendering bacteria incapable of secreting effector proteins. Likewise, CD and NMR data for the Shigella inner rod protein MxiI indicate this protein lacks a tertiary structure as well. Our results reveal that the monomeric forms of the T3SS inner rod proteins are partially folded.  相似文献   

4.
Type III secretion systems (TTSS) are sophisticated macromolecular structures that play an imperative role in bacterial infections and human disease. The TTSS needle complex is conserved among bacterial pathogens and shows broad similarity to the flagellar basal body. However, the TTSS of enteropathogenic and enterohemorrhagic Escherichia coli, two important human enteric pathogens, is unique in that it has an approximately 12-nm-diameter filamentous extension to the needle that is composed of the secreted translocator protein EspA. EspA filaments and flagellar structures have very similar helical symmetry parameters. In this study we investigated EspA filament assembly and the delivery of effector proteins across the bacterial cell wall. We show that EspA filaments are elongated by addition of EspA subunits to the tip of the growing filament. Moreover, EspA filament length is modulated by the availability of intracellular EspA subunits. Finally, we provide direct evidence that EspA filaments are hollow conduits through which effector proteins are delivered to the extremity of the bacterial cell (and subsequently into the host cell).  相似文献   

5.
A molecular ruler, FliK, controls the length of the flagellar hook. FliK measures hook length and catalyses the secretion‐substrate specificity switch from rod‐hook substrate specificity to late substrate secretion, which includes the filament subunits. Here, we show normal hook‐length control and filament assembly in the complete absence of the C‐ring thus refuting the previous ‘cup’ model for hook‐length control. Mutants of C‐ring components, which are reported to produce short hooks, show a reduced rate of hook–basal body assembly thereby allowing for a premature secretion‐substrate specificity switch. Unlike fliK null mutants, hook‐length control in an autocleavage‐defective mutant of flhB, the protein responsible for the switch to late substrate secretion, is completely abolished. FliK deletion variants that retain the ability to measure hook length are secreted thus demonstrating that FliK directly measures rod‐hook length during the secretion process. Finally, we present a unifying model accounting for all published data on hook‐length control in which FliK acts as a molecular ruler that takes measurements of rod‐hook length while being intermittently secreted during the assembly process of the hook–basal body complex.  相似文献   

6.
The export of bacterial toxins across the bacterial envelope requires the assembly of complex, membrane‐embedded protein architectures. Pseudomonas aeruginosa employs type III secretion (T3S) injectisome to translocate exotoxins directly into the cytoplasm of a target eukaryotic cell. This multi‐protein channel crosses two bacterial membranes and extends further as a needle through which the proteins travel. We show in this work that PscI, proposed to form the T3S system (T3SS) inner rod, possesses intrinsic properties to polymerize into flexible and regularly twisted fibrils and activates IL‐1β production in mouse bone marrow macrophages in vitro. We also found that point mutations within C‐terminal amphipathic helix of PscI alter needle assembly in vitro and T3SS function in cell infection assays, suggesting that this region is essential for an efficient needle assembly. The overexpression of PscF partially compensates for the absence of the inner rod in PscI‐deficient mutant by forming a secretion‐proficient injectisome. All together, we propose that the polymerized PscI in P. aeruginosa optimizes the injectisome function by anchoring the needle within the envelope‐embedded complex of the T3S secretome and – contrary to its counterpart in Salmonella – is not involved in substrate switching.  相似文献   

7.
Enteropathogenic Escherichia coli employs a type III secretion system (T3SS) to translocate virulence effector proteins directly into enterocyte host cells, leading to diarrheal disease. The T3SS is encoded within the chromosomal locus of enterocyte effacement (LEE). The function of some of the LEE-encoded proteins remains unknown. Here we investigated the role of the Orf16 protein in T3SS biogenesis and function. An orf16 deletion mutant showed translocator and effector protein secretion profiles different from those of wild-type cells. The orf16 null strain produced T3S structures with abnormally long needles and filaments that caused weak hemolysis of red blood cells. Furthermore, the number of fully assembled T3SSs was also reduced in the orf16 mutant, indicating that Orf16, though not essential, is required for efficient T3SS assembly. Analysis of protein secretion revealed that Orf16 is a T3SS-secreted substrate and regulates the secretion of the inner rod component EscI. Both pulldown and yeast two-hybrid assays showed that Orf16 interacts with the C-terminal domain of an inner membrane component of the secretion apparatus, EscU; the inner rod protein EscI; the needle protein EscF; and the multieffector chaperone CesT. These results suggest that Orf16 regulates needle length and, along with EscU, participates in a substrate specificity switch from early substrates to translocators. Taken together, our results suggest that Orf16 acts as a molecular measuring device in a way similar to that of members of the Yersinia YscP and flagellar FliK protein family. Therefore, we propose that this protein be renamed EscP.  相似文献   

8.
‘Type III secretion’ (T3S) refers to a secretion pathway that is common to the flagellae of eubacteria and the injectisomes of some Gram-negative bacteria. Flagellae are rotary nanomachines allowing motility but they contain a built-in secretion apparatus that exports their own distal components to the distal end of the growing structure where they polymerize. In some cases they have been shown to export non-flagellar proteins. Injectisomes are transkingdom communication apparatuses allowing bacteria docked at the surface of a eukaryotic cell membrane to inject effector proteins across the two bacterial membranes and the eukaryotic cell membrane. Both nanomachines share a similar basal body embedded in the two bacterial membranes, topped either by a hook and a filament or by a stiff short needle. Both appear to be assembled in the same fashion. They recognize their substrate by a loose N-terminal peptide signal and the help of individual chaperones of a new type.  相似文献   

9.
Piecing together the type III injectisome of bacterial pathogens   总被引:2,自引:0,他引:2  
The Type III secretion system is a bacterial 'injectisome' which allows Gram-negative bacteria to shuttle virulence proteins directly into the host cells they infect. This macromolecular assembly consists of more than 20 different proteins put together to collectively span three biological membranes. The recent T3SS crystal structures of the major oligomeric inner membrane ring, the helical needle filament, needle tip protein, the associated ATPase, and outer membrane pilotin together with electron microscopy reconstructions have dramatically furthered our understanding of how this protein translocator functions. The crucial details that describe how these proteins assemble into this oligomeric complex will need a hybrid of structural methodologies including EM, crystallography, and NMR to clarify the intra- and inter-molecular interactions between different structural components of the apparatus.  相似文献   

10.
'Type III secretion' (T3S) refers to a secretion pathway that is common to the flagellae of eubacteria and the injectisomes of some gram-negative bacteria. Flagellae are rotary nanomachines allowing motility but they contain a built-in secretion apparatus that exports their own distal components to the distal end of the growing structure where they polymerize. In some cases they have been shown to export non-flagellar proteins. Injectisomes are transkingdom communication apparatuses allowing bacteria docked at the surface of a eukaryotic cell membrane to inject effector proteins across the two bacterial membranes and the eukaryotic cell membrane. Both nanomachines share a similar basal body embedded in the two bacterial membranes, topped either by a hook and a filament or by a stiff short needle. Both appear to be assembled in the same fashion. They recognize their substrate by a loose N-terminal peptide signal and the help of individual chaperones of a new type.  相似文献   

11.
The length of the needle ending the Yersinia Ysc injectisome is determined by YscP, a protein acting as a molecular ruler. In addition, YscP is required for Yop secretion. In the present paper, by a systematic deletion analysis, we localized accurately the region required for Yop secretion between residues 405 and 500. As this C-terminal region of YscP has also been shown to control needle length it probably represents the substrate specificity switch of the machinery. By a bioinformatics analysis, we show that this region has a globular structure, an original alpha/beta fold, a P-x-L-G signature and presumably no catalytic activity. In spite of very limited sequence similarities, this structure is conserved among the proteins that are presumed to control the needle length in many different injectisomes and also among members of the FliK family, which control the flagellar hook length. This region thus represents a new protein domain that we called T3S4 for Type III secretion substrate specificity switch. The T3S4 domain of YscP can be replaced by the T3S4 domain of AscP (Aeromonas salmonicida) or PscP (Pseudomonas aeruginosa) but not by the one from FliK, indicating that in spite of a common global structure, these domains need to fit their partner proteins in the secretion apparatus.  相似文献   

12.
FliN is a component of the bacterial flagellum that is present at levels of more than 100 copies and forms the bulk of the C ring, a drum-shaped structure at the inner end of the basal body. FliN interacts with FliG and FliM to form the rotor-mounted switch complex that controls clockwise-counterclockwise switching of the motor. In addition to its functions in motor rotation and switching, FliN is thought to have a role in the export of proteins that form the exterior structures of the flagellum (the rod, hook, and filament). Here, we describe the crystal structure of most of the FliN protein of Thermotoga maritima. FliN is a tightly intertwined dimer composed mostly of beta sheet. Several well-conserved hydrophobic residues form a nonpolar patch on the surface of the molecule. A mutation in the hydrophobic patch affected both flagellar assembly and switching, showing that this surface feature is important for FliN function. The association state of FliN in solution was studied by analytical ultracentrifugation, which provided clues to the higher-level organization of the protein. T. maritima FliN is primarily a dimer in solution, and T. maritima FliN and FliM together form a stable FliM(1)-FliN(4) complex. Escherichia coli FliN forms a stable tetramer in solution. The arrangement of FliN subunits in the tetramer was modeled by reference to the crystal structure of tetrameric HrcQB(C), a related protein that functions in virulence factor secretion in Pseudomonas syringae. The modeled tetramer is elongated, with approximate dimensions of 110 by 40 by 35 Angstroms, and it has a large hydrophobic cleft formed from the hydrophobic patches on the dimers. On the basis of the present data and available electron microscopic images, we propose a model for the organization of FliN subunits in the C ring.  相似文献   

13.
The T3SS (type III secretion system) is a multi-protein complex that plays a central role in the virulence of many gram-negative bacterial pathogens. This apparatus spans both bacterial membranes and transports virulence factors from the bacterial cytoplasm into eukaryotic host cells. The T3SS exports substrates in a hierarchical and temporal manner. The first secreted substrates are the rod/needle proteins which are incorporated into the T3SS apparatus and are required for the secretion of later substrates, the translocators and effectors. In the present study, we provide evidence that rOrf8/EscI, a poorly characterized locus of enterocyte effacement-encoded protein, functions as the inner rod protein of the T3SS of EPEC (enteropathogenic Escherichia coli). We demonstrate that EscI is essential for type III secretion and is also secreted as an early substrate of the T3SS. We found that EscI interacts with EscU, the integral membrane protein that is linked to substrate specificity switching, implicating EscI in the substrate-switching event. Furthermore, we showed that EscI self-associates and interacts with the outer membrane secretin EscC, further supporting its function as an inner rod protein. Overall, the results of the present study suggest that EscI is the YscI/PrgJ/MxiI homologue in the T3SS of attaching and effacing pathogens.  相似文献   

14.
Bacterial flagella and injectisomes are supramolecular structures that are responsible for motility and for delivering toxic proteins into the cytosol of eukaryotic cells, respectively. They look very similar to each other. Both systems are called type III secretion pathways, and their components share substantial sequence similarities. One remarkable feature of the type III systems is that the length of their substructure is fairly well controlled by a secretion switching machinery, which consists of at least two proteins, a length control protein and an integral membrane secretion component. Here, we review how and why the length of these structures must be accurately controlled.  相似文献   

15.
The Salmonella flagellar secretion apparatus is a member of the type III secretion (T3S) family of export systems in bacteria. After completion of the flagellar motor structure, the hook-basal body (HBB), the flagellar T3S system undergoes a switch from early to late substrate secretion, which results in the expression and assembly of the external, filament propeller-like structure. In order to characterize early substrate secretion-signals in the flagellar T3S system, the FlgB, and FlgC components of the flagellar rod, which acts as the drive-shaft within the HBB, were subject to deletion mutagenesis to identify regions of these proteins that were important for secretion. The β-lactamase protein lacking its Sec-dependent secretion signal (Bla) was fused to the C-terminus of FlgB and FlgC and used as a reporter to select for and quantify the secretion of FlgB and FlgC into the periplasm. Secretion of Bla into the periplasm confers resistance to ampicillin. In-frame deletions of amino acids 9 through 18 and amino acids 39 through 58 of FlgB decreased FlgB secretion levels while deleting amino acid 6 through 14 diminished FlgC secretion levels. Further PCR-directed mutagenesis indicated that amino acid F45 of FlgB was critical for secretion. Single amino acid mutagenesis revealed that all amino acid substitutions at F45 of FlgB position impaired rod assembly, which was due to a defect of FlgB secretion. An equivalent F49 position in FlgC was essential for assembly but not for secretion. This study also revealed that a hydrophobic patch in the cleaved C-terminal domain of FlhB is critical for recognition of FlgB at F45.  相似文献   

16.
Caenorhabditis elegans body wall muscle contains two isoforms of myosin heavy chain, MHC A and MHC B, that differ in their ability to initiate thick filament assembly. Whereas mutant animals that lack the major isoform, MHC B, have fewer thick filaments, mutant animals that lack the minor isoform, MHC A, contain no normal thick filaments. MHC A, but not MHC B, is present at the center of the bipolar thick filament where initiation of assembly is thought to occur (Miller, D.M.,I. Ortiz, G.C. Berliner, and H.F. Epstein. 1983. Cell. 34:477-490). We mapped the sequences that confer A-specific function by constructing chimeric myosins and testing them in vivo. We have identified two distinct regions of the MHC A rod that are sufficient in chimeric myosins for filament initiation function. Within these regions, MHC A displays a more hydrophobic rod surface, making it more similar to paramyosin, which forms the thick filament core. We propose that these regions play an important role in filament initiation, perhaps mediating close contacts between MHC A and paramyosin in an antiparallel arrangement at the filament center. Furthermore, our analysis revealed that all striated muscle myosins show a characteristic variation in surface hydrophobicity along the length of the rod that may play an important role in driving assembly and determining the stagger at which dimers associate.  相似文献   

17.
Intermediate filament (IF) assembly is remarkable, in that it appears to be self-driven by the primary sequence of IF proteins, a family (40-220 kd) with diverse sequences, but similar secondary structures. Each IF polypeptide has a central 310 amino acid residue alpha-helical rod domain, involved in coiled-coil dinner formation. Two short (approximately 10 amino acid residue) stretches at the ends of this rod are more highly conserved than the rest, although the molecular basis for this is unknown. In addition, the rod is segmented by three short nonhelical linkers of conserved location, but not sequence. To examine the degree to which different conserved helical and nonhelical rod sequences contribute to dimer, tetramer, and higher ordered interactions, we introduced proline mutations in residues throughout the rod of a type I keratin, and we removed existing proline residues from the linker regions. To further probe the role of the rod ends, we introduced more subtle mutations near the COOH-terminus. We examined the consequences of these mutations on (a) IF network formation in vivo, and (b) 10-nm filament assembly in vitro. Surprisingly, all proline mutations located deep in the coiled-coil rod segment showed rather modest effects on filament network formation and 10-nm filament assembly. In addition, removing the existing proline residues was without apparent effect in vivo, and in vitro, these mutants assembled into 10-nm filaments with a tendency to aggregate, but with otherwise normal appearance. The most striking effects on filament network formation and IF assembly were observed with mutations at the very ends of the rod. These data indicate that sequences throughout the rod are not equal with respect to their role in filament network formation and in 10-nm filament assembly. Specifically, while the internal rod segments seem able to tolerate considerable changes in alpha-helical conformation, the conserved ends seem to be essential for creating a very specific structure, in which even small perturbations can lead to loss of IF stability and disruption of normal cellular interactions. These findings have important implications for the disease Epidermolysis Bullosa Simplex, arising from point mutations in keratins K5 or K14.  相似文献   

18.
The factors and mechanisms regulating assembly of intermediate filament (IF) proteins to produce filaments with their characteristic 10 nm diameter are not fully understood. All IF proteins contain a central rod domain flanked by variable head and tail domains. To elucidate the role that different domains of IF proteins play in filament assembly, we used negative staining and electron microscopy (EM) to study the in vitro assembly properties of purified bacterially expressed IF proteins, in which specific domains of the proteins were either mutated or swapped between a cytoplasmic (mouse neurofilament-light (NF-L) subunit) and nuclear intermediate filament protein (human lamin A). Our results indicate that filament formation is profoundly influenced by the composition of the assembly buffer. Wild type (wt) mouse NF-L formed 10 nm filaments in assembly buffer containing 175 mM NaCl, whereas a mutant deleted of 18 NH2-terminal amino acids failed to assemble under similar conditions. Instead, the mutant assembled efficiently in buffers containing CaCl2 > or = 6 mM forming filaments that were 10 times longer than those formed by wt NF-L, although their diameter was significantly smaller (6-7 nm). These results suggest that the 18 NH2-terminal sequence of NF-L might serve two functions, to inhibit filament elongation and to promote lateral association of NF-L subunits. We also demonstrate that lengthening of the NF-L rod domain, by inserting a 42 aa sequence unique to nuclear IF proteins, does not compromise filament assembly in any noticeable way. Our results suggests that the known inability of nuclear lamin proteins to assemble into 10 nm filaments in vitro cannot derive solely from their longer rod domain. Finally, we demonstrate that the head domain of lamin A can substitute for that of NF-L in filament assembly, whereas substitution of both the head and tail domains of lamins for those of NF-L compromises assembly. Therefore, the effect of lamin A "tail" domain alone, or the synergistic effect of lamin "head" and the "tail" domains together, interferes with assembly into 10-nm filaments.  相似文献   

19.
Type IV pili are expressed from a wide variety of Gram‐negative bacteria and play a major role in host cell adhesion and bacterial motility. PilC is one of at least a dozen different proteins that are implicated in Type IV pilus assembly in Thermus thermophilus and a member of a conserved family of integral inner membrane proteins which are components of the Type II secretion system (GspF) and the archeal flagellum. PilC/GspF family members contain repeats of a conserved helix‐rich domain of around 100 residues in length. Here, we describe the crystal structure of one of these domains, derived from the N‐terminal domain of Thermus thermophilus PilC. The N‐domain forms a dimer, adopting a six helix bundle structure with an up‐down‐up‐down‐up‐down topology. The monomers are related by a rotation of 170°, followed by a translation along the axis of the final α‐helix of approximately one helical turn. This means that the regions of contact on helices 5 and 6 in each monomer are overlapping, but different. Contact between the two monomers is mediated by a network of hydrophobic residues which are highly conserved in PilC homologs from other Gram‐negative bacteria. Site‐directed mutagenesis of residues at the dimer interface resulted in a change in oligomeric state of PilC from tetramers to dimers, providing evidence that this interface is also found in the intact membrane protein and suggesting that it is important to its function. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
《Biophysical journal》2021,120(17):3820-3830
Bacterial cells construct many structures, such as the flagellar hook and the type III secretion system (T3SS) injectisome, that aid in crucial physiological processes such as locomotion and pathogenesis. Both of these structures involve long extracellular channels, and the length of these channels must be highly regulated in order for these structures to perform their intended functions. There are two leading models for how length control is achieved in the flagellar hook and T3SS needle: the substrate switching model, in which the length is controlled by assembly of an inner rod, and the ruler model, in which a molecular ruler controls the length. Although there is qualitative experimental evidence to support both models, comparatively little has been done to quantitatively characterize these mechanisms or make detailed predictions that could be used to unambiguously test these mechanisms experimentally. In this work, we constructed a mathematical model of length control based on the ruler mechanism and found that the predictions of this model are consistent with experimental data—not just for the scaling of the average length with the ruler protein length, but also for the variance. Interestingly, we found that the ruler mechanism allows for the evolution of needles with large average lengths without the concomitant large increase in variance that occurs in the substrate switching mechanism. In addition to making further predictions that can be tested experimentally, these findings shed new light on the trade-offs that may have led to the evolution of different length control mechanisms in different bacterial species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号