首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Crab spiders (Thomisidae) indirectly affect insect flower‐visitor and flowering plant interactions by consuming and altering the behaviour of insects. 2. Although one expects insect flower‐visitors to avoid crab spiders actively, some crab spider species are known to attract flower‐visitors. Crab spiders may use UV signalling to lure potential prey to the flowers they occupy. 3. In the present study, a field experiment was conducted to examine the effects of crab spiders occupying three prairie plant species for the insect flower‐visitor community. Pollinating insects were significantly attracted to inflorescences with crab spiders compared to inflorescences without crab spiders for two plant species, and herbivorous insects were attracted to inflorescences with crab spiders for one of these plant species. The two flowering plant species with increased pollinator visitation showed increased seed weights for plants with crab spiders, indicating crab spider presence indirectly increased pollination. 4. To test the UV signalling hypothesis, inflorescences with crab spiders of one plant species were observed under both a UV‐blocking plastic and a clear plastic control. Contrary to our prediction, flower‐visitors were not more likely to land on inflorescences under the clear plastic; the UV signalling hypothesis was not supported. Other unknown explanations underlie prey attraction to inflorescences with crab spiders.  相似文献   

2.
Large‐scale spatial variability in plant–pollinator communities (e.g. along geographic gradients, across different landscapes) is relatively well understood. However, we know much less about how these communities vary at small scales within a uniform landscape. Plants are sessile and highly sensitive to microhabitat conditions, whereas pollinators are highly mobile and, for the most part, display generalist feeding habits. Therefore, we expect plants to show greater spatial variability than pollinators. We analysed the spatial heterogeneity of a community of flowering plants and their pollinators in 40 plots across a 40‐km2 area within an uninterrupted Mediterranean scrubland. We recorded 3577 pollinator visits to 49 plant species. The pollinator community (170 species) was strongly dominated by honey bees (71.8% of the visits recorded). Flower and pollinator communities showed similar beta‐diversity, indicating that spatial variability was similar in the two groups. We used path analysis to establish the direct and indirect effects of flower community distribution and honey bee visitation rate (a measure of the use of floral resources by this species) on the spatial distribution of the pollinator community. Wild pollinator abundance was positively related to flower abundance. Wild pollinator visitation rate was negatively related to flower abundance, suggesting that floral resources were not limiting. Pollinator and flower richness were positively related. Pollinator species composition was weakly related to flower species composition, reflecting the generalist nature of flower–pollinator interactions and the opportunistic nature of pollinator flower choices. Honey bee visitation rate did not affect the distribution of the wild pollinator community. Overall, we show that, in spite of the apparent physiognomic uniformity, both flowers and pollinators display high levels of heterogeneity, resulting in a mosaic of idiosyncratic local communities. Our results provide a measure of the background of intrinsic heterogeneity within a uniform habitat, with potential consequences on low‐scale ecosystem function and microevolutionary patterns.  相似文献   

3.
Carla J. Essenberg 《Oecologia》2013,171(1):187-196
Responses of flower-visiting animals to floral density can alter interactions between plants, influencing a variety of biological processes, including plant population dynamics and the evolution of flowering phenology. Many studies have found effects of floral or plant density on pollinator visitation rates at patch scales, but little is known about responses of flower visitors to floral densities at larger scales. Here, I present data from an observational field study in which I measured the effects of floral density on visitation to the annual composite Holocarpha virgata at both patch (4 m2) and site (12.6 ha) spatial scales. The species composition of flower visitors changed with floral density, and did so in different ways at the two scales. At the site scale, average floral density within patches of H. virgata or within patches of all summer-flowering species combined had a significant positive effect on per-flowerhead visitation by the long-horned bee Melissodes lupina and no significant effects on visitation by any other taxa. At the patch scale, per-flowerhead visitation by honeybees significantly increased whereas visitation by M. lupina often decreased with increasing floral density. For both species, responses to patch-scale floral density were strongest when site-scale floral density was high. The scale-dependence of flower visitor responses to floral density and the interactions between site- and patch-scale effects of floral density observed in this study underscore the importance of improving our understanding of pollinators’ responses to floral density at population scales.  相似文献   

4.
Abstract 1. Does the diversity and abundance of one trophic level affect another? Several studies at the landscape level have found a positive relationship between the diversity of floral resources and the diversity and abundance of pollinators. However, little is known about the relationship between these trophic levels on a smaller spatial scale, and the importance of blossom density relative to plant species richness in predicting abundance and richness of different flower visitor groups. 2. This study used a small‐scale approach to investigate how, and if, the diversity and abundance of floral resources in study plots affected the visitation activity of different flower visitor groups. During 201 observation periods between late May and mid‐August 2003, 3682 visits were observed. Bumblebees (60%), muscoids (17%), syrphids (9%), and beetles (5%) were the most abundant flower visitors. 3. Regression analysis was used to investigate the relationship between blossom density and plant species richness with visitation activity, including the probability of presence in plots, the visits within plots, and the visitor richness of the most abundant pollinator groups. 4. The activity of beetles, bumblebees, and muscoids was positively predicted by the variation in blossom density, while syrphid activity was better predicted by plant species richness. Overall, the models for beetles and bumblebees explained much more of the variation in activity compared with the models for the dipterans, and blossom density was a better predictor of both flower visitor richness and activity than was plant species richness.  相似文献   

5.
Background and AimsInterspecific difference in pollinators (pollinator isolation) is important for reproductive isolation in flowering plants. Species-specific pollination by fungus gnats has been discovered in several plant taxa, suggesting that they can contribute to reproductive isolation. Nevertheless, their contribution has not been studied in detail, partly because they are too small for field observations during flower visitation. To quantify their flower visitation, we used the genus Arisaema (Araceae) because the pitcher-like spathe of Arisaema can trap all floral visitors.MethodsWe evaluated floral visitor assemblage in an altitudinal gradient including five Arisaema species. We also examined interspecific differences in altitudinal distribution (geographic isolation) and flowering phenology (phenological isolation). To exclude the effect of interspecific differences in altitudinal distribution on floral visitor assemblage, we established ten experimental plots including the five Arisaema species in high- and low-altitude areas and collected floral visitors. We also collected floral visitors in three additional sites. Finally, we estimated the strength and contribution of these three reproductive barriers using a unified formula for reproductive isolation.Key ResultsEach Arisaema species selectively attracted different fungus gnats in the altitudinal gradient, experimental plots and additional sites. Altitudinal distribution and flowering phenology differed among the five Arisaema species, whereas the strength of geographic and phenological isolations were distinctly weaker than those in pollinator isolation. Nevertheless, the absolute contribution of pollinator isolation to total reproductive isolation was weaker than geographic and phenological isolations, because pollinator isolation functions after the two early-acting barriers in plant life history.ConclusionsOur results suggest that selective pollination by fungus gnats potentially contributes to reproductive isolation. Since geographic and phenological isolations can be disrupted by habitat disturbance and interannual climate change, the strong and stable pollinator isolation might compensate for the weakened early-acting barriers as an alternative reproductive isolation among the five Arisaema species.  相似文献   

6.
In the face of global decline in biodiversity, the relationship between diversity and species interactions deserves particular attention. If pollinators are strongly dependent on floral diversity due to mutual specialization, declines in plant diversity, e.g. caused by land use intensification, may be associated with linked extinctions of pollinators. However, the general extent of pollinator specialization is still poorly known. To explore the dependence of local bee and hoverfly communities on flower diversity, we recorded flower supply and flower‐visiting insects on 27 meadows with varying flower diversity in southern Germany and analyzed (a) whether the diversity of flower visitors is correlated with flower diversity, (b) whether the degree of dietary specialization of flower visitors changes with flower diversity and (c) whether flower preferences of individual flower visitor species are constant or variable between different communities. Flower–visitor interaction webs were compiled during a single day on each meadow. This approach prevents relating pollinator species to flowers they never encounter because of non‐overlapping phenology or spatial segregation. (a) Flower diversity and flower visitor diversity were positively correlated. (b) Flower visitor assemblies were significantly specialized at a relatively high level, contrasting to the opinion that plant–pollinator webs are highly generalized, and providing a possible explanation for the positive diversity correlation. However, the level of specialization did not change significantly across the gradient of flower diversity, suggesting that pollinators are partitioned to a similar extent in each meadow. (c) In the analysis of ten common flower visitor species previously categorized as generalists, strong evidence was found for both, consistent preferences and preferences that differ between sites. These results indicate a flexibility in flower preferences and a dynamic resource partitioning among pollinators. Generally, our findings highlight the complexity of plant–pollinator interactions and confirm the importance of flower diversity for bee and hoverfly communities.  相似文献   

7.
The effects of climate change on species interactions are poorly understood. Investigating the mechanisms by which species interactions may shift under altered environmental conditions will help form a more predictive understanding of such shifts. In particular, components of climate change have the potential to strongly influence floral volatile organic compounds (VOCs) and, in turn, plant–pollinator interactions. In this study, we experimentally manipulated drought and herbivory for four forb species to determine effects of these treatments and their interactions on (1) visual plant traits traditionally associated with pollinator attraction, (2) floral VOCs, and (3) the visitation rates and community composition of pollinators. For all forbs tested, experimental drought universally reduced flower size and floral display, but there were species‐specific effects of drought on volatile emissions per flower, the composition of compounds produced, and subsequent pollinator visitation rates. Moreover, the community of pollinating visitors was influenced by drought across forb species (i.e. some pollinator species were deterred by drought while others were attracted). Together, these results indicate that VOCs may provide more nuanced information to potential floral visitors and may be relatively more important than visual traits for pollinator attraction, particularly under shifting environmental conditions.  相似文献   

8.
Fragmentation of natural vegetation creates one of the largest threats to plant–pollinator interactions. Although fragmentation impacts on plant populations have been explored in many, mainly herbaceous, species, the response of wild mass‐flowering species is poorly known. Here, we studied 28 heathland patches dominated by the mass‐flowering shrub Rhododendron ferrugineum, each presenting different R. ferrugineum floral display sizes (total inflorescence number per patch) and patch isolation (median distance to the three nearest patches). We assessed the impacts of these two factors on (i) heathland patch visitor assemblage (considering R. ferrugineum versus surrounding community) and (ii) R. ferrugineum flower visitation rate and pollen transfer limitation (comparing seed set from emasculated to pollen‐supplemented flowers). We found that diversity and abundance of bees visiting R. ferrugineum in heathland patches significantly decreased with decreasing R. ferrugineum floral display, while overall visitor density per patch and flower visitation rate increased. Moreover, a decrease in massive floral display and increase in patch isolation resulted in reduced visitor density in the surrounding community. Even in patches with few individuals, we found disproportionate visitor abundance in R. ferrugineum compared to the surrounding community. Finally, pollen transfer limitation in R. ferrugineum was neither affected by visitation rate nor by patch attributes. By disproportionally attracting pollinators from co‐flowering species, and probably promoting geitonogamous pollen transfer, the mass‐flowering trait appears adequate to compensate, in terms of conspecific pollen transfer, for the decrease in visitor diversity and abundance and in mate availability, which usually result from population fragmentation.  相似文献   

9.
ABSTRACT

Background: Little information is available about life history of páramo plants such as phenology and plant-animal interactions.

Aims: We analysed phenological patterns of flowering and characterised the structure of a plant-pollinator network in a Venezuelan páramo in order to identify key species in this ecosystem.

Methods: We counted the number of individuals with flowers of 76 native plant species and recorded their pollinators in 16 permanent plots between 3000 and 4200 m monthly for three years. We used this dataset to develop a plant-pollinator network, on which nine different metrics related to structural properties were calculated.

Results: The flowering of most species concentrated during the rainy season (between May and November), however some species have continuous flowering. The guild of floral visitors included hummingbirds, flower piercers, bumblebees, Diptera and Lepidoptera. The plant – flower visitor interaction network did not exhibit nestedness, but showed a significant specialization index (H2) and high values of functional complementarity.

Conclusions: Páramo plants have the capacity of maintaining a resident nectarivorus fauna (bumblebees and hummingbirds) because of continuous flower offer during the year. However, the plant – pollinator network identified could be very sensitive to the loss component species, owing to high levels of specialisation and functional complementarity.  相似文献   

10.
Pollinators are declining in Europe due to intensification of agriculture, habitat loss and fragmentation. Restored landfill sites are a significant potential reserve of semi‐natural habitat, so their conservation value for supporting populations of pollinating insects was here examined by assessing whether the plant and pollinator assemblages of restored landfill sites are comparable to reference sites of existing wildlife value. Floral characteristics of the vegetation and the species richness and abundance of flower‐visiting insect assemblages were compared between nine pairs of restored landfill sites and reference sites in the East Midlands of the United Kingdom, using standardized methods over two field seasons. No differences were found between the restored landfill and reference sites in terms of species richness or abundance of plants in flower and both types of site had similar assemblages of pollinators. However, plant and insect assemblages differed across the season, with species richness and abundance being lower for the restored landfill sites in the spring and higher in the autumn compared to the reference sites. The results indicate that in this region, landfill sites are being restored to a state comparable to that of the reference sites with regards to their provision of floral resources and the associated insect pollinator assemblages. Since there are currently 2,200 working landfill sites in England and Wales, covering 28,000 ha, and closing at a rate of 100 per year, this is potentially a significant reserve of land that could be restored.  相似文献   

11.
In the face of global pollinator decline, extensively managed grasslands play an important role in supporting stable pollinator communities. However, different types of extensive management may promote particular plant species and thus particular functional traits. As the functional traits of flowering plant species (e.g., flower size and shape) in a habitat help determine the identity and frequency of pollinator visitors, they can also influence the structures of plant−pollinator interaction networks (i.e., pollination networks). The aim of this study was to examine how the type of low‐intensity traditional management influences plant and pollinator composition, the structure of plant−pollinator interactions, and their mediation by floral and insect functional traits. Specifically, we compared mown wooded meadows to grazed alvar pastures in western Estonia. We found that both management types fostered equal diversity of plants and pollinators, and overlapping, though still distinct, plant and pollinator compositions. Wooded meadow pollination networks had significantly higher connectance and specialization, while alvar pasture networks achieved higher interaction diversity at a standardized sampling of interactions. Pollinators with small body sizes and short proboscis lengths were more specialized in their preference for particular plant species and the specialization of individual pollinators was higher in alvar pastures than in wooded meadows. All in all, the two management types promoted diverse plant and pollinator communities, which enabled the development of equally even and nested pollination networks. The same generalist plant and pollinator species were important for the pollination networks of both wooded meadows and alvar pastures; however, they were complemented by management‐specific species, which accounted for differences in network structure. Therefore, the implementation of both management types in the same landscape helps to maintain high species and interaction diversity.  相似文献   

12.
Natural and within-farmland biodiversity enhances crop productivity   总被引:1,自引:0,他引:1  
Ongoing expansion of large-scale agriculture critically threatens natural habitats and the pollination services they offer. Creating patches with high plant diversity within farmland is commonly suggested as a measure to benefit pollinators. However, farmers rarely adopt such practice, instead removing naturally occurring plants (weeds). By combining pollinator exclusion experiments with analysis of honeybee behaviour and flower-visitation webs, we found that the presence of weeds allowed pollinators to persist within sunflower fields, maximizing the benefits of the remaining patches of natural habitat to productivity of this large-scale crop. Weed diversity increased flower visitor diversity, hence ameliorating the measured negative effects of isolation from natural habitat. Although honeybees were the most abundant visitors, diversity of flower visitors enhanced honeybee movement, being the main factor influencing productivity. Conservation of natural patches combined with promoting flowering plants within crops can maximize productivity and, therefore, reduce the need for cropland expansion, contributing towards sustainable agriculture.  相似文献   

13.
Land‐use intensification and resulting habitat loss are put forward as the main causes of flower visitor decline. However, the impact of urbanization, the prime driver of land‐use intensification in Europe, is poorly studied. In particular, our understanding of whether and how it affects the composition and functioning of flower visitor assemblages is scant, yet required to cope with increasing urbanization worldwide. Here, we use a nation‐wide dataset of plant‐flower visitor (Coleoptera, Diptera, Hymenoptera, Lepidoptera) interactions sampled by citizen scientists following a standardized protocol to assess macroecological changes in richness and composition of flower visitor communities with urbanization. We measured the community composition by quantifying the relative occurrence of generalist and specialist flower visitors based on their specialisation on flowering plant families. We show that urbanization is associated with reduced flower visitor richness and a shift in community composition toward generalist insects, indicating a modification of the functional composition of communities. These results suggest that urbanization affects not only the richness of flower visitor assemblages but may also cause their large‐scale functional homogenization. Future research should focus on designing measures to reconcile urban development with flower visitor conservation.  相似文献   

14.
1. The flower visitor community consists not only of pollinators but also of non‐pollinators, such as florivores, thieves and predators that attack flower visitors. Although there is increasing evidence that early‐season foliar herbivory influences pollinator visitation through changes in floral traits, few studies have explored indirect effects of foliar herbivory on community structure of the flower visitors. We examined how early‐season foliar herbivory influences the flower visitor community established in late season. 2. We conducted an inoculation experiment using a lacebug (Corythucha marmorata), which is a predominantly herbivorous insect attacking leaves of tall goldenrod (Solidago altissima) in Japan. 3. Flower abundance significantly decreased when damaged by the lacebug. The numbers of pollinators, florivores and thieves were positively correlated with flower abundance, whereas predators were not. In response to flower abundance, florivores decreased on damaged plants. On the other hand, thieves increased on damaged plants, and pollinators and predators did not differ between damaged and undamaged plants. 4. When effects of flower abundance were excluded, foliar herbivory still influenced florivores negatively and thieves positively. This implies that factors besides flower abundance may have affected the numbers of florivores and thieves. 5. Community composition of flower visitors on damaged plants significantly differed from undamaged plants, although overall abundance, taxonomic richness and taxonomic evenness were unaffected by foliar herbivory in the early season. It is important to recognise that only evaluating species diversity and overall abundance may fail to detect the significant consequence of early‐season herbivory on the flower visitor community.  相似文献   

15.
Some pollination systems, such as buzz‐pollination, are associated with floral morphologies that require a close physical interaction between floral sexual organs and insect visitors. In these systems, a pollinator's size relative to the flower may be an important feature determining whether the visitor touches both male and female sexual organs and thus transfers pollen between plants efficiently. To date, few studies have addressed whether in fact the “fit” between flower and pollinator influences pollen transfer, particularly among buzz‐pollinated species. Here we use Solanum rostratum, a buzz‐pollinated plant with dimorphic anthers and mirror‐image flowers, to investigate whether the morphological fit between the pollinator's body and floral morphology influences pollen deposition. We hypothesized that when the size of the pollinator matches the separation between the sexual organs in a flower, more pollen should be transferred to the stigma than when the visitor is either too small or too big relative to the flower. To test this hypothesis, we exposed flowers of S. rostratum with varying levels of separation between sexual organs, to bumblebees (Bombus terrestris) of different sizes. We recorded the number of visits received, pollen deposition, and fruit and seed production. We found higher pollen deposition when bees were the same size or bigger than the separation between anther and stigma within a flower. We found a similar, but not statistically significant pattern for fruit set. In contrast, seed set was more likely to occur when the size of the flower exceeded the size of the bee, suggesting that other postpollination processes may be important in translating pollen receipt to seed set. Our results suggest that the fit between flower and pollinator significantly influences pollen deposition in this buzz‐pollinated species. We speculate that in buzz‐pollinated species where floral morphology and pollinators interact closely, variation in the visitor's size may determine whether it acts mainly as a pollinator or as a pollen thief (i.e., removing pollen rewards but contributing little to pollen deposition and fertilization).  相似文献   

16.
  • The association between plants and flower visitors has been historically proposed as a main factor driving the evolutionary change of both flower and pollinator phenotypes. The considerable diversity in floral morphology within the tribe Antirrhineae has been traditionally related to pollinator types. We used empirical data on the flower visitors from 59 Antirrhineae taxa from the literature and our own field surveys, which provide an opportunity to test whether flower phenotypes are reliable predictors of visitors and pollinator niches.
  • The degree of adjustment between eight key floral traits and actual visitors was explored by testing the predictive value of inferred pollinator syndromes (i.e. suites of floral traits that characterise groups of plant species related to pollination). Actual visitors and inferred pollinator niches (categorisation of visitors’ association using a modularity algorithm) were also explored using Linear Discriminant Analysis (LDA).
  • The bee pollinator niche is correctly classified for flowers with dull corolla colour, without nectar guides, as the most important predictor. Both predictive value and statistical classification prove useful in classifying Antirrhineae taxa and the bee pollinator niche, mostly as a consequence of the high proportion of genera and taxa with occluded corollas primarily visited by bees. Our predictive approach rendered a high Positive Predictive Value (PPV) of floral traits in the diagnosis of visitors/pollinator niches. In particular, a high PPV was found for bees as both visitors and forming pollinator niches. In addition, LDA showed that four pollinator niches are well defined based on floral traits.
  • The large number of species visited by bees irrespective of pollinator syndromes leads us to hypothesise their generalist pollinator role, despite the phenotypically specialised flowers of Antirrhineae.
  相似文献   

17.
Ongoing biodiversity decline impairs ecosystem processes, including pollination. Flower visitation, an important indicator of pollination services, is influenced by plant species richness. However, the spatio‐temporal responses of different pollinator groups to plant species richness have not yet been analyzed experimentally. Here, we used an experimental plant species richness gradient to analyze plant–pollinator interactions with an unprecedented spatio‐temporal resolution. We observed four pollinator functional groups (honeybees, bumblebees, solitary bees, and hoverflies) in experimental plots at three different vegetation strata between sunrise and sunset. Visits were modified by plant species richness interacting with time and space. Furthermore, the complementarity of pollinator functional groups in space and time was stronger in species‐rich mixtures. We conclude that high plant diversity should ensure stable pollination services, mediated via spatio‐temporal niche complementarity in flower visitation.  相似文献   

18.
Pollination is a valuable ecosystem service, and plant–pollinator interactions in particular are known to play a crucial role in conservation and ecosystem functioning. These mutualisms, like other ecological interactions, are currently threatened by different drivers of global change, mainly habitat loss, fragmentation, or modification of its quality. Most studies so far have focused on the impact of such disturbances on particular species interactions and we thus need more empirical evidence on the responses at a community‐level. Here we evaluated how habitat loss influenced the pattern of interactions between plants and their flower visitors in a coastal dune marshland community. Using data from four years (2008–2011), we assessed the effect of a large disturbance in the area (occurring in 2010) that represented the loss of more than 50% of the vegetation cover. We found a considerable decrease in species richness and abundance of flower visitors, which resulted in a lower number of interactions after the disturbance. Not all functional groups, however, responded similarly. Contrary to the expected from previous findings, bees and wasps were less negatively influenced than beetles, flies and ants, possibly due to their higher movement capacity. Species interactions in the community were more specialized after habitat loss, resulting in a lower level of network nestedness and a higher modularity. At a species level, the number of flower visitors per plant decreased after the disturbance, and plants were visited by less abundant flower visitors. Our findings lead us to predict that the overall plant–flower visitor network became less robust and resilient to future perturbations. However, the fact that each functional group responds distinctly to disturbances makes it more difficult to foresee the final consequences on community composition and ecosystem functioning.  相似文献   

19.
Plant phenotypic plasticity in response to antagonists can affect other community members such as mutualists, conferring potential ecological costs associated with inducible plant defence. For flowering plants, induction of defences to deal with herbivores can lead to disruption of plant–pollinator interactions. Current knowledge on the full extent of herbivore‐induced changes in flower traits is limited, and we know little about specificity of induction of flower traits and specificity of effect on flower visitors. We exposed flowering Brassica nigra plants to six insect herbivore species and recorded changes in flower traits (flower abundance, morphology, colour, volatile emission, nectar quantity, and pollen quantity and size) and the behaviour of two pollinating insects. Our results show that herbivory can affect multiple flower traits and pollinator behaviour. Most plastic floral traits were flower morphology, colour, the composition of the volatile blend, and nectar production. Herbivore‐induced changes in flower traits resulted in positive, negative, or neutral effects on pollinator behaviour. Effects on flower traits and pollinator behaviour were herbivore species‐specific. Flowers show extensive plasticity in response to antagonist herbivores, with contrasting effects on mutualist pollinators. Antagonists can potentially act as agents of selection on flower traits and plant reproduction via plant‐mediated interactions with mutualists.  相似文献   

20.
The large majority of angiosperm species depend on animals for pollination, including many agricultural crops, and plant‐pollinator interactions have been extensively studied. However, not all floral visitors actually transfer pollen, and efforts to distinguish true pollinators from mere visitors are particularly scarce among the bat pollination literature. To determine whether Old World bat species are equally effective pollinators in mixed‐agricultural areas of southern Thailand, we examined six night‐blooming plant taxa and quantified pollinator importance (PI) of seven common nectarivorous bat species. PI was calculated as the product of nightly bat visitation rate (obtained from mist‐netting data) and pollen transfer efficiency (estimated from bat pollen loads). We found that PI varied by both bat species and plant species. In general, the nectar‐specialist bat species were more important pollinators, yet their order of importance differed across our focal plant species. In addition, PI was dictated more by pollen transfer effectiveness than visitation rate. Our findings highlight the importance of Old World bat pollinators within southern Thailand's mixed‐agricultural landscape and illustrate how seemingly similar floral visitors can have very different contributions toward plant pollination success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号