首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rare lipoprotein A (RlpA) is a widely conserved outer membrane protein of unknown function that has previously only been studied in Escherichia coli, where it localizes to the septal ring and scattered foci along the lateral wall, but mutants have no phenotypic change. Here we show rlpA mutants of Pseudomonas aeruginosa form chains of short, fat cells when grown in low osmotic strength media. These morphological defects indicate RlpA is needed for efficient separation of daughter cells and maintenance of rod shape. Analysis of peptidoglycan sacculi from an rlpA deletion mutant revealed increased tetra and hexasaccharides that lack stem peptides (hereafter called ‘naked glycans’). Incubation of these sacculi with purified RlpA resulted in release of naked glycans containing 1,6‐anhydro N‐acetylmuramic acid ends. RlpA did not degrade sacculi from wild‐type cells unless the sacculi were subjected to a limited digestion with an amidase to remove some of the stem peptides. Thus, RlpA is a lytic transglycosylase with a strong preference for naked glycan strands. We propose that RlpA activity is regulated in vivo by substrate availability, and that amidases and RlpA work in tandem to degrade peptidoglycan in the division septum and lateral wall.  相似文献   

2.
We have found a striking difference between the modes of action of amdinocillin (mecillinam) and compound A22, both of which inhibit cell elongation. This was made possible by employment of a new method using an Escherichia coli peptidoglycan (PG)-recycling mutant, lacking ampD, to analyze PG degradation during cell elongation and septation. Using this method, we have found that A22, which is known to prevent MreB function, strongly inhibited PG synthesis during elongation. In contrast, treatment of elongating cells with amdinocillin, which inhibits penicillin-binding protein 2 (PBP2), allowed PG glycan synthesis to proceed at a nearly normal rate with concomitant rapid degradation of the new glycan strands. By treating cells with A22 to inhibit sidewall synthesis, the method could also be applied to study septum synthesis. To our surprise, over 30% of newly synthesized septal PG was degraded during septation. Thus, excess PG sufficient to form at least one additional pole was being synthesized and rapidly degraded during septation. We propose that during cell division, rapid removal of the excess PG serves to separate the new poles of the daughter cells. We have also employed this new method to demonstrate that PBP2 and RodA are required for the synthesis of glycan strands during elongation and that the periplasmic amidases that aid in cell separation are minor players, cleaving only one-sixth of the PG that is turned over by the lytic transglycosylases.  相似文献   

3.
Peptidoglycan (PG) is a cell wall heteropolymer that is essential for cell integrity. PG hydrolases participate in correct assembly of the PG layer and have been shown to be required for cell division, cell daughter separation, and maintenance of bacterial morphology. In silico analysis of the Helicobacter pylori genome resulted in identification of three potential hydrolases, Slt, MltD, and AmiA. This study was aimed at determining the roles of the putative lytic transglycosylases, Slt and MltD, in H. pylori morphology, growth, and PG metabolism. Strain 26695 single mutants were constructed using a nonpolar kanamycin cassette. The slt and mltD mutants formed normal bacillary and coccoid bacteria in the exponential and stationary phases, respectively. The slt and mltD mutants had growth rates comparable to the growth rate of the parental strain. However, the mltD mutant exhibited enhanced survival in the stationary phase compared to the wild type or the slt mutant. PG was purified from exponentially growing bacteria and from bacteria in the stationary phase, and its muropeptide composition was analyzed by high-pressure liquid chromatography. This analysis revealed changes in the muropeptide composition indicating that MltD and Slt have lytic transglycosylase activities. Glycan strand analysis suggested that Slt and MltD have exo and endo types of lytic transglycosylase activity, indicating that Slt is involved mainly in PG turnover and MltD is involved mainly in rearrangement of the PG layer. In this study, we determined the distinct roles of the lytic transglycosylases Slt and MltD in PG metabolism.  相似文献   

4.
Most bacteria possess a peptidoglycan cell wall that determines their morphology and provides mechanical robustness during osmotic challenges. The biosynthesis of this structure is achieved by a large set of synthetic and lytic enzymes with varying substrate specificities. Although the biochemical functions of these proteins are conserved and well‐investigated, the precise roles of individual factors and the regulatory mechanisms coordinating their activities in time and space remain incompletely understood. Here, we comprehensively analyze the autolytic machinery of the alphaproteobacterial model organism Caulobacter crescentus, with a specific focus on LytM‐like endopeptidases, soluble lytic transglycosylases and amidases. Our data reveal a high degree of redundancy within each protein family but also specialized functions for individual family members under stress conditions. In addition, we identify two lytic transglycosylases and an amidase as new divisome components that are recruited to midcell at distinct stages of the cell cycle. The midcell localization of these proteins is affected by two LytM factors with degenerate catalytic domains, DipM and LdpF, which may serve as regulatory hubs coordinating the activities of multiple autolytic enzymes during cell constriction and fission respectively. These findings set the stage for in‐depth studies of the molecular mechanisms that control peptidoglycan remodeling in C. crescentus.  相似文献   

5.
The physiological function of cell wall amidases has been investigated in several proteobacterial species. In all cases, they have been implicated in the cleavage of cell wall material synthesized by the cytokinetic ring. Although typically non‐essential, this activity is critical for daughter cell separation and outer membrane invagination during division. In Escherichia coli, proteins with LytM domains also participate in cell separation by stimulating amidase activity. Here, we investigated the function of amidases and LytM proteins in the opportunistic pathogen Pseudomonas aeruginosa. In agreement with studies in other organisms, PaAmiB and three LytM proteins were found to play crucial roles in P. aeruginosa cell separation, envelope integrity and antibiotic resistance. Importantly, the phenotype of amidase‐defective P. aeruginosa cells also differed in informative ways from the E. coli paradigm; PaAmiB was found to be essential for viability and the successful completion of cell constriction. Our results thus reveal a key role for amidase activity in cytokinetic ring contraction. Furthermore, we show that the essential function of PaAmiB can be bypassed in mutants activated for a Cpx‐like envelope stress response, suggesting that this signaling system may elicit the repair of division machinery defects in addition to general envelope damage.  相似文献   

6.
As one of the final steps in the bacterial growth cycle, daughter cells must be released from one another by cutting the shared peptidoglycan wall that separates them. In Escherichia coli, this delicate operation is performed by several peptidoglycan hydrolases, consisting of multiple amidases, lytic transglycosylases, and endopeptidases. The interactions among these enzymes and the molecular mechanics of how separation occurs without lysis are unknown. We show here that deleting the endopeptidase PBP 4 from strains lacking AmiC produces long chains of unseparated cells, indicating that PBP 4 collaborates with the major peptidoglycan amidases during cell separation. Another endopeptidase, PBP 7, fulfills a secondary role. These functions may be responsible for the contributions of PBPs 4 and 7 to the generation of regular cell shape and the production of normal biofilms. In addition, we find that the E. coli peptidoglycan amidases may have different substrate preferences. When the dd-carboxypeptidase PBP 5 was deleted, thereby producing cells with higher levels of pentapeptides, mutants carrying only AmiC produced a higher percentage of cells in chains, while mutants with active AmiA or AmiB were unaffected. The results suggest that AmiC prefers to remove tetrapeptides from peptidoglycan and that AmiA and AmiB either have no preference or prefer pentapeptides. Muropeptide compositions of the mutants corroborated this latter conclusion. Unexpectedly, amidase mutants lacking PBP 5 grew in long twisted chains instead of straight filaments, indicating that overall septal morphology was also defective in these strains.  相似文献   

7.
8.
Remodelling of the peptidoglycan (PG) exoskeleton is intimately tied to the growth and division of bacteria. Enzymes that hydrolyse PG are critical for these processes, but their activities must be tightly regulated to prevent the generation of lethal breaches in the PG matrix. Despite their importance, the mechanisms regulating PG hydrolase activity have remained elusive. Here we investigate the control of cell division hydrolases called amidases (AmiA, AmiB and AmiC) required for Escherichia coli cell division. Poorly regulated amiB mutants were isolated encoding lytic AmiB variants with elevated basal PG hydrolase activities in vitro. The structure of an AmiB orthologue was also solved, revealing that the active site of AmiB is occluded by a conserved alpha helix. Strikingly, most of the amino acid substitutions in the lytic AmiB variants mapped to this domain and are predicted to disrupt its interaction with the active site. Our results therefore support a model in which cell separation is stimulated by the reversible relief of amidase autoinhibition governed by conserved subcomplexes within the cytokinetic ring. Analogous conformational control mechanisms are likely to be part of a general strategy used to control PG hydrolases present within multienzyme PG-remodelling machines.  相似文献   

9.
During cytokinesis in Escherichia coli, the peptidoglycan (PG) layer produced by the divisome must be split to promote cell separation. Septal PG splitting is mediated by the amidases: AmiA, AmiB, and AmiC. To efficiently hydrolyze PG, the amidases must be activated by LytM domain factors. EnvC specifically activates AmiA and AmiB, while NlpD specifically activates AmiC. Here, we used an exportable, superfolding variant of green fluorescent protein (GFP) to demonstrate that AmiB, like its paralog AmiC, is recruited to the division site by an N-terminal targeting domain. The results of colocalization experiments indicate that EnvC is recruited to the division site well before its cognate amidase AmiB. Moreover, we show that EnvC and AmiB have differential FtsN requirements for their localization. EnvC accumulates at division sites independently of this essential division protein, whereas AmiB localization is FtsN dependent. Interestingly, we also report that AmiB and EnvC are recruited to division sites independently of one another. The same is also true for AmiC and NlpD. However, unlike EnvC, we find that NlpD shares an FtsN-dependent localization with its cognate amidase. Importantly, when septal PG synthesis is blocked by cephalexin, both EnvC and NlpD are recruited to septal rings, whereas the amidases fail to localize. Our results thus suggest that the order in which cell separation amidases and their activators localize to the septal ring relative to other components serves as a fail-safe mechanism to ensure that septal PG synthesis precedes the expected burst of PG hydrolysis at the division site, accompanied by amidase recruitment.  相似文献   

10.
The WalKR two-component system is essential for viability of Staphylococcus aureus, a major pathogen. We have shown that WalKR acts as the master controller of peptidoglycan metabolism, yet none of the identified regulon genes explain its requirement for cell viability. Transmission electron micrographs revealed cell wall thickening and aberrant division septa in the absence of WalKR, suggesting its requirement may be linked to its role in coordinating cell wall metabolism and cell division. We therefore tested whether uncoupling autolysin gene expression from WalKR-dependent regulation could compensate for its essential nature. Uncoupled expression of genes encoding lytic transglycosylases or amidases did not restore growth to a WalKR-depleted strain. We identified only two WalKR-regulon genes whose expression restored cell viability in the absence of WalKR: lytM and ssaA. Neither of these two genes are essential under our conditions and a ΔlytM ΔssaA mutant does not present any growth defect. LytM is a glycyl-glycyl endopeptidase, hydrolyzing the pentaglycine interpeptide crossbridge, and SsaA belongs to the CHAP amidase family, members of which such as LysK and LytA have been shown to have D-alanyl-glycyl endopeptidase activity, cleaving between the crossbridge and the stem peptide. Taken together, our results strongly suggest that peptidoglycan crosslinking relaxation through crossbridge hydrolysis plays a crucial role in the essential requirement of the WalKR system for cell viability.  相似文献   

11.
During bacterial cytokinesis, hydrolytic enzymes are used to split wall material shared by adjacent daughter cells to promote their separation. Precise control over these enzymes is critical to prevent breaches in wall integrity that can cause cell lysis. How these potentially lethal hydrolases are regulated has remained unknown. Here, we investigate the regulation of cell wall turnover at the Escherichia coli division site. We show that two components of the division machinery with LytM domains (EnvC and NlpD) are direct regulators of the cell wall hydrolases (amidases) responsible for cell separation (AmiA, AmiB and AmiC). Using in vitro cell wall cleavage assays, we show that EnvC activates AmiA and AmiB, whereas NlpD activates AmiC. Consistent with these findings, we show that an unregulated EnvC mutant requires functional AmiA or AmiB but not AmiC to induce cell lysis, and that the loss of NlpD phenocopies an AmiC? defect. Overall, our results suggest that cellular amidase activity is regulated spatially and temporally by coupling their activation to the assembly of the cytokinetic ring.  相似文献   

12.
N-acetylmuramyl-L-alanine amidases are widely distributed among bacteria. However, in Escherichia coli, only one periplasmic amidase has been described until now, which is suggested to play a role in murein recycling. Here, we report that three amidases, named AmiA, B and C, exist in E. coli and that they are involved in splitting of the murein septum during cell division. Moreover, the amidases were shown to act as powerful autolytic enzymes in the presence of antibiotics. Deletion mutants in amiA, B and C were growing in long chains of unseparated cells and displayed a tolerant response to the normally lytic combination of aztreonam and bulgecin. Isolated murein sacculi of these chain-forming mutants showed rings of thickened murein at the site of blocked septation. In vitro, these murein ring structures were digested more slowly by muramidases than the surrounding murein. In contrast, when treated with the amidase AmiC or the endopeptidase MepA, the rings disappeared, and gaps developed at these sites in the murein sacculi. These results are taken as evidence that highly stressed murein cross-bridges are concentrated at the site of blocked cell division, which, when cleaved, result in cracking of the sacculus at this site. As amidase deletion mutants accumulate trimeric and tetrameric cross-links in their murein, it is suggested that these structures mark the division site before cleavage of the septum.  相似文献   

13.
Escherichia coli contains multiple peptidoglycan-specific hydrolases, but their physiological purposes are poorly understood. Several mutants lacking combinations of hydrolases grow as chains of unseparated cells, indicating that these enzymes help cleave the septum to separate daughter cells after cell division. Here, we confirm previous observations that in the absence of two or more amidases, thickened and dark bands, which we term septal peptidoglycan (SP) rings, appear at division sites in isolated sacculi. The formation of SP rings depends on active cell division, and they apparently represent a cell division structure that accumulates because septal synthesis and hydrolysis are uncoupled. Even though septal constriction was incomplete, SP rings exhibited two properties of mature cell poles: they behaved as though composed of inert peptidoglycan, and they attracted the IcsA protein. Despite not being separated by a completed peptidoglycan wall, adjacent cells in these chains were often compartmentalized by the inner membrane, indicating that cytokinesis could occur in the absence of invagination of the entire cell envelope. Finally, deletion of penicillin-binding protein 5 from amidase mutants exacerbated the formation of twisted chains, producing numerous cells having septa with abnormal placements and geometries. The results suggest that the amidases are necessary for continued peptidoglycan synthesis during cell division, that their activities help create a septum having the appropriate geometry, and that they may contribute to the development of inert peptidoglycan.  相似文献   

14.
Proteins with LytM (Peptidase_M23) domains are broadly distributed in bacteria and have been implicated in a variety of important processes, including cell division and cell‐shape determination. Most LytM‐like proteins that have been structurally and/or biochemically characterized are metallo‐endopeptidases that cleave cross‐links in the peptidoglycan (PG) cell wall matrix. Notable exceptions are the Escherichia coli cell division proteins EnvC and NlpD. These LytM factors are not hydrolases themselves, but instead serve as activators that stimulate PG cleavage by target enzymes called amidases to promote cell separation. Here we report the structure of the LytM domain from EnvC, the first structure of a LytM factor implicated in the regulation of PG hydrolysis. As expected, the fold is highly similar to that of other LytM proteins. However, consistent with its role as a regulator, the active‐site region is degenerate and lacks a catalytic metal ion. Importantly, genetic analysis indicates that residues in and around this degenerate active site are critical for amidase activation in vivo and in vitro. Thus, in the regulatory LytM factors, the apparent substrate binding pocket conserved in active metallo‐endopeptidases has been adapted to control PG hydrolysis by another set of enzymes.  相似文献   

15.
Höltje JV  Heidrich C 《Biochimie》2001,83(1):103-108
Multiple deletions in murein hydrolases revealed that predominantly amidases are responsible for cleavage of the septum during cell division. Endopeptidases and lytic transglycosylases seem also be involved. In the absence of these enzymes E. coli grows normally but forms chains of adhering cells. Surprisingly, mutants lacking up to eight different murein hydrolases still grow with almost unaffected growth rate. Therefore it is speculated that general enlargement of the murein sacculus may differ from cell division by using transferases rather than the two sets of hydrolytic and synthetic enzymes as seems to be the case for the constriction process. A model is presented that describes growth of the murein of both Gram-positive and -negative bacteria by the activity of murein transferases. It is speculated that enzymes exist that catalyze a transpeptidation of the pre-existing murein onto murein precursors or nascent murein by using the chemical energy present in peptide cross-bridges. Such enzymes would at the same time cleave bonds in the murein net and insert new material into the growing sacculus.  相似文献   

16.
Synthesis and hydrolysis of septal peptidoglycan (PG) are critical processes at the conclusion of cell division that enable separation of daughter cells. Cleavage of septal PG is mediated by PG amidases, hydrolytic enzymes that release peptide side chains from the glycan strand. Most gammaproteobacteria, including Escherichia coli, encode several functionally redundant periplasmic amidases. However, members of the Vibrio genus, including the enteric pathogen Vibrio cholerae, encode only a single PG amidase, AmiB. Here, we show that V. cholerae AmiB is crucial for cell division and growth. Genetic and biochemical analyses indicated that AmiB is regulated by two activators, EnvC and NlpD, at least one of which is required for AmiB''s localization to the cell division site. Localization of the activators (and thus of AmiB) is dependent upon the cell division protein FtsN. These factors mediate septal PG cleavage in E. coli as well; however, their precise roles vary between the two organisms in a number of ways. Notably, even though V. cholerae EnvC and NlpD appear to be functionally redundant under most growth conditions tested, NlpD is specifically required for intestinal colonization in the infant mouse model of cholera and for V. cholerae resistance against bile salts, perhaps due to environmental regulation of AmiB or its activators. Collectively, our findings reveal that although the cellular components that enable cleavage of septal PG appear to be generally conserved between E. coli and V. cholerae, they can be combined into diverse functional regulatory networks.  相似文献   

17.
The bacterial cell wall heteropolymer peptidoglycan is not a static structure as it is constantly being made and recycled throughout the bacterium's life cycle. This turnover of peptidoglycan is a highly coordinated event involving a complement of autolytic enzymes that include those with specificity for either the carbohydrate or the peptide linkages of peptidoglycan. One major class of these autolysins are the N-acetylmuramoyl-L-alanine amidases which cleave the amide linkage between the stem peptides and the lactyl moiety of muramoyl residues. They are required in the periplasm for cell separation during division and in both the periplasm and cytoplasm to trim soluble released PG fragments during turnover for recycling. The gene encoding N-acetylmuramoyl-L-alanine amidase B in Pseudomonas aeruginosa was cloned and over-expressed in Escherichia coli. The recombinant protein with a C-terminal His-tag was purified to apparent homogeneity by a combination of affinity and cation-exchange chromatographies using Ni(2+)NTA-agarose and Source S, respectively. Four separate assays involving zymography, light scattering, HPLC and MALDI-TOF mass spectrometry were used to confirm the activity of the protein as an N-acetylmuramoyl-L-alanine amidase.  相似文献   

18.
Neisseria gonorrhoeae releases peptidoglycan (PG) fragments during infection that provoke a large inflammatory response and, in pelvic inflammatory disease, this response leads to the death and sloughing of ciliated cells of the Fallopian tube. We characterized the biochemical functions and localization of two enzymes responsible for the release of proinflammatory PG fragments. The putative lytic transglycosylases LtgA and LtgD were shown to create the 1,6‐anhydromuramyl moieties, and both enzymes were able to digest a small, synthetic tetrasaccharide dipeptide PG fragment into the cognate 1,6‐anhydromuramyl‐containing reaction products. Degradation of tetrasaccharide PG fragments by LtgA is the first demonstration of a family 1 lytic transglycosylase exhibiting this activity. Pulse‐chase experiments in gonococci demonstrated that LtgA produces a larger amount of PG fragments than LtgD, and a vast majority of these fragments are recycled. In contrast, LtgD was necessary for wild‐type levels of PG precursor incorporation and produced fragments predominantly released from the cell. Additionally, super‐resolution microscopy established that LtgA localizes to the septum, whereas LtgD is localized around the cell. This investigation suggests a model where LtgD produces PG monomers in such a way that these fragments are released, whereas LtgA creates fragments that are mostly taken into the cytoplasm for recycling.  相似文献   

19.
The Bacillus subtilis CwlC and the Bacillus polymyxa var. colistinus CwlV are the cell wall lytic N-acetylmuramoyl-l-alanine amidases in the CwlB (LytC) family. Deletion in the CwlC amidase from the C terminus to residue 177 did not change the amidase activity. However, when the deletion was extended slightly toward the N terminus, the amidase activity was entirely lost. Further, the N-terminal deletion mutant without the first 19 amino acids did not have the amidase activity. These results indicate that the N-terminal half (residues 1-176) of the CwlC amidase, the region homologous to the truncated CwlV (CwlVt), is a catalytic domain. Site-directed mutagenesis was performed on 20 highly conserved amino acid residues within the catalytic domain of CwlC. The amidase activity was lost completely on single amino acid substitutions at two residues (Glu-24 and Glu-141). Similarly, the substitution of the two glutamic acid residues (E26Q and E142Q) of the truncated CwlV (CwlV1), which corresponded to Glu-24 and Glu-141 of CwlC, was critical to the amidase activity. The EDTA-treated CwlV1 did not have amidase activity. The amidase activity of the EDTA-treated CwlV1 was restored by the addition of Zn2+, Mn2+, and Co2+ but not by the addition of Mg2+ and Ca2+. These results suggest that the amidases in the CwlB family are zinc amidases containing two glutamic acids as catalytic residues.  相似文献   

20.
Hett EC  Chao MC  Deng LL  Rubin EJ 《PLoS pathogens》2008,4(2):e1000001
The final stage of bacterial cell division requires the activity of one or more enzymes capable of degrading the layers of peptidoglycan connecting two recently developed daughter cells. Although this is a key step in cell division and is required by all peptidoglycan-containing bacteria, little is known about how these potentially lethal enzymes are regulated. It is likely that regulation is mediated, at least partly, through protein-protein interactions. Two lytic transglycosylases of mycobacteria, known as resuscitation-promoting factor B and E (RpfB and RpfE), have previously been shown to interact with the peptidoglycan-hydrolyzing endopeptidase, Rpf-interacting protein A (RipA). These proteins may form a complex at the septum of dividing bacteria. To investigate the function of this potential complex, we generated depletion strains in M. smegmatis. Here we show that, while depletion of rpfB has no effect on viability or morphology, ripA depletion results in a marked decrease in growth and formation of long, branched chains. These growth and morphological defects could be functionally complemented by the M. tuberculosis ripA orthologue (rv1477), but not by another ripA-like orthologue (rv1478). Depletion of ripA also resulted in increased susceptibility to the cell wall-targeting beta-lactams. Furthermore, we demonstrate that RipA has hydrolytic activity towards several cell wall substrates and synergizes with RpfB. These data reveal the unusual essentiality of a peptidoglycan hydrolase and suggest a novel protein-protein interaction as one way of regulating its activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号