首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both phenotypic plasticity and locally adapted ecotypes may contribute to the success of invasive species in a wide range of habitats. Here, we conducted common garden experiments and molecular marker analysis to test the two alternative hypotheses in invasive alligator weed (Alternanthera philoxeroides), which colonizes both aquatic and terrestrial habitats. Ninety individuals from three pairs of aquatic versus terrestrial populations across southern China were analyzed, using inter simple sequence repeat (ISSR) marker, to examine population differentiation in neutral loci. Two common gardens simulating aquatic and terrestrial habitats were set up to examine population differentiation in quantitative traits. We found no evidence of population differentiation in both neutral loci and quantitative traits. Most individuals shared the same ISSR genotype. Meanwhile, plants from different habitats showed similar reaction norms across the two common gardens. In particular, plants allocated much more biomass to the belowground roots in the terrestrial environment, where alligator weed may lose part or all of the aboveground shoots because of periodical or accidental disturbances, than those in the aquatic environment. The combined evidence from molecular marker analysis and common garden experiments support the plasticity hypothesis rather than the ecotype hypothesis in explaining the adaptation of alligator weed in a wide range of habitats.  相似文献   

2.
Vegetative growth patterns ofRumex acetosella L. were investigated both in experimental conditions and in the field. Plants originating from geographically and ecologically contrasting areas expressed significant differentiation in height, weight, and leaf production, even at early stages. The plants belonging to subsp.angiocarpus grew thaller than other plants. The differences among populations grown in a uniform environment provide evidence for genetic differentiation in morphology. Plants in natural populations were considerably lighter than experimental plants, which intensively produced a large number of rosette leaves. These differences can be attributed to substantial phenotypic plasticity. When the correlation structure among the growth traits was analyzed, seed weight and early plant size appeared to influence future plant size.  相似文献   

3.
Morphometric analyses of populations ofCrepis tectorum raised under uniform conditions support the earlier finding based on herbarium studies that extensive divergence has taken place in western Europe with a centre of diversity in the Baltic lowland area. A crossing experiment showed that subsp.pumila on the island of Öland has acquired a wide range of derived characters without the establishment of strong reproductive barriers, the only exception being a weak tendency for crosses with other populations on Öland to yield more fertile F1 offspring than crosses with weedy and non-weedy populations in adjacent regions. Canadian weed populations showed a more uniform response in crosses with subsp.pumila than did morphologically similar weed populations scattered throughout Central Europe. While F2 data suggest a monogenic basis of differences in the extent of leaf dissection, other distinctive traits appear to be governed by multiple genetic factors with individually slight effects.  相似文献   

4.
Unpalatable plants can protect palatable neighbor plants from grazing pressure, but morphological evolution of a palatable species might change its interactions with unpalatable plants. We predicted that when a palatable species has locally adapted to grazing by expressing a dwarf phenotype that reduces grazer accessibility, the dwarf plants experience relatively more competitive effects than facilitative effects from large, well-defended, unpalatable species. We used a transplant experiment, in which both dwarf and large ecotypes of a palatable annual species, Persicaria longiseta, were transplanted outside and inside the canopy of an unpalatable nettle, Urtica thunbergiana, in a long-term deer grazing habitat of Nara Park, Japan. The dwarf ecotype of Persicaria has adapted to the grazing environments of the park by exhibiting inherently short shoots and small leaves, whereas the large ecotype is found in habitats with no grazing history. A previous common-garden study suggested that the phenotypic differences were genetically based and that phenotypic plasticity contributed little to the morphological difference. The large-phenotype of Persicaria experienced significantly increased morphological size, survival, and reproductive output under the Urtica canopy compared to outside the canopy, whereas these traits of the dwarf phenotype were reduced under the Urtica canopy compared to outside. These results indicate that the net effects of Urtica on Persicaria were positive for the large ecotype and negative for the dwarf ecotype. Thus, the morphological adaptation of a palatable species to avoid grazing altered its interactions with a large, well-defended neighbor.  相似文献   

5.
Phenotypic plasticity and genetic differentiation are two possible mechanisms that plants use to cope with varying environments. Although alligator weed (Alternanthera philoxeroides) possesses very low genetic diversity, this alien weed has successfully invaded diverse habitats with considerably varying water availability (from swamps to dry lands) in China. In contrast, its native congener (Alternanthera sessilis) has a much narrower ecological breadth, and is usually found in moist habitats. To understand the mechanisms underlying the contrasting pattern, we performed a greenhouse experiment to compare the reaction norms of alligator weed with those of its native congener, in which water availability was manipulated. Our results revealed that the two congeners had similar direction of phenotypic plasticity. However, A. philoxeroides showed greater plasticity in amount than did A. sessilis in many traits examined during the switch from wet to drought treatment. Nearly all of the phenotypic variance in A. philoxeroides could be ascribed to plasticity, while A. sessilis had a much higher fraction of phenotypic variance that could be explained by genotypic variation. These interspecific differences in plastic responses to variable water availability partially explained the difference in spatial distribution of the two congeners.  相似文献   

6.
Plant spatial patterns critically influence community dynamics, including plant interactions, resource distribution, and community invasibility. Research suggests that resistance of western US plant communities to further invasion by the exotic annual grass Bromus tectorum may be linked to the positions of, and spacing between, perennial plants. In particular, gaps between aggregated clusters of perennial plants may facilitate B. tectorum invasion by providing safe sites for seed germination and establishment. We tested the effects of random, regular, and aggregated bunchgrass patterns, manipulated at both community (plot) and neighborhood scales, on B. tectorum biomass and spikelet production after experimental seed addition. We found strong evidence of treatment effects on both biomass and spikelets, which varied between treatments by approximately 2.5-fold. Mean biomass and spikelet counts were lowest in plots in which bunchgrasses were aggregated at both community and neighborhood scales, likely due to the increased competition. Although not statistically distinguishable from most other treatments, B. tectorum biomass and spikelet counts were highest in plots with bunchgrass patterns that were random at the community scale and aggregated at the neighborhood scale. These plots were characterized by relatively large gaps between bunchgrass clusters, suggesting that B. tectorum may exploit gaps between aggregated perennial plants. Our results support the emerging hypothesis that community resistance to B. tectorum invasion could be increased through manipulation of perennial vegetation to reduce basal gap size and connectivity.  相似文献   

7.
Pierre Meerts 《Oecologia》1992,92(3):442-449
Polygonum aviculare subsp. aviculare is an annual selfing weed common in abandoned arable fields where it occurs as a widespread hexaploid cytotype (6x=60) and a rarer tetraploid cytotype (4x=40). The basis of phenological differentiation between the two cytotypes observed in a natural population where they coexist was examined in a greenhouse experiment comprising six soil conditions consisting of factorial combinations of two levels of fertility and three pot sizes. The environmental and genetic component of variation in 11 life history and morphological traits was quantified. Even though all traits except life span were plastic the two cytotypes appear to have evolved contrasting life history strategies and it is inferred that this can account for the temporal niche differentiation observed in the abandoned field during the first year of dereliction. Tetraploids are short-lived plants allocating a high proportion of their biomass to reproduction and completing their life cycle before July when the plant cover is sparse. Hexaploids are larger, later flowering, longer lived, plants with a lower reproductive effort and a higher final seed yield; it is inferred that these traits enable the hexaploids to compete successfully with the dense herbaceous layer of summer annuals that develops in the course of the first year of secondary succession. Differentiation in phenotypic plasticity between the two cytotypes was interpreted as indicative of higher opportunism and lower tolerance of poor soils and restricted rooting space in the hexaploid compared to the tetraploid cytotype.  相似文献   

8.
Two experiments were carried out using two different approaches to compare populations ofCrepis tectorum (Asteraceae). One was based on a comparison of means of various vegetative and reproductive characters and another was based on a comparison of response patterns of the same characters in a series of environments. Population divergence within two earlier recognized form series, one from weed habitats and one from alvar habitats on Baltic islands, resulted in a partially overlapping pattern in cluster analyses based on character means. However, the pattern revealed by a comparison of the direction and amount of plastic response suggested that populations within the two form series had more similar response patterns than other combinations of populations. It was concluded that patterns of plasticity may provide useful additional information on the overall similarity among taxa. An hypothesis that plants in weed populations should exhibit a greater phenotypic response to the environments than plants in alvar populations was rejected.  相似文献   

9.
For plants that rely on animals for pollination, the ability to attract the animals to their flowers can be a crucial component of fitness. A large number of studies have documented pollinators to be important selective agents driving the evolution of flower size and correlated traits on a large scale. In this paper, we studied variations of reproductive traits in self-incompatible Trollius ranunculoides (Ranunculaceae) among local habitats at Alpine Meadow. The results showed significant variations of floral size, seed mass per fruit and sex allocation (male/female mass ratio) between different habitats, where floral size and seed mass was not explained fully by variation of plant size among habitats. It suggested that other factors unrelated to plant size might also influence floral variation. However, in our manipulated experiment, it showed no effects of manipulated floral size not only on visit rate of effective pollinators (bees and flies) but also on female success (seed set, seed mass per fruit), irrespective of flower density. Consequently, we could not conclude that the variation of floral size in T. ranunculoides was due to phenotypic plasticity, or natural selection. But if selection occurred, it should not be mediated by pollinators. It was likely that variation of sex allocation between habitats lead to changes of flower or corolla size, because plant invested much less to male function (female-biased sex allocation and larger single seed mass) in shade habitat (bottom of bush) than other exposed habitats, to gain higher fitness. In addition, high-floral density in T. ranunculoides had a negative effect on service of main pollinator (bees) and female success. This situation would influence the strength of selection on floral size.  相似文献   

10.
Current divergent selection may promote floral trait differentiation among conspecific populations in flowering plants. However, whether this applies to complex traits such as colour or scents has been little studied, even though these traits often vary within species. In this study, we compared floral colour and odour as well as selective pressures imposed upon these traits among seven populations belonging to three subspecies of the widespread, generalist orchid Anacamptis coriophora. Colour was characterized using calibrated photographs, and scents were sampled using dynamic headspace extraction and analysed using gas chromatography–mass spectrometry. We then quantified phenotypic selection exerted on these traits by regressing fruit set values on floral trait values. We showed that the three studied subspecies were characterized by different floral colour and odour, with one of the two predominant floral volatiles emitted by each subspecies being taxon‐specific. Plant size was positively correlated with fruit set in most populations, whereas we found no apparent link between floral colour and female reproductive success. We detected positive selection on several taxon‐specific compounds in A. coriophora subsp. fragrans, whereas no selection was found on floral volatiles of A. coriophora subsp. coriophora and A. coriophora subsp. martrinii. This study is one of the first to document variation in phenotypic selection exerted on floral scents among conspecific populations. Our results suggest that selection could contribute to ongoing chemical divergence among A. coriophora subspecies.  相似文献   

11.
Summary Causes for the widespread abundance of the alien grass Bromus tectorum (cheatgrass) after fire in semiarid areas of western North America may include: (1) utilization of resources freed by the removal of fireintolerant plants; and (2) successful competition between B. tectorum and individual plants that survive fire. On a site in northwestern Nevada (USA), measurements of soil water content, plant water potential, aboveground biomass production, water use efficiency, and B. tectorum tiller density were used to determine if B. tectorum competes with either of two native species (Stipa comata and Chrysothamnus viscidiflorus) or simply uses unclaimed resources. Soil water content around native species occurring with B. tectorum was significantly lower (P<0.05) than around individuals without B. tectorum nearby. Native species had significantly more negative plant water potential when they occurred with B. tectorum. Aboveground biomass was significantly higher for native species without B. tectorum. However, the carbon isotope ratio of leaves for native species with B. tectorum was not significantly different from individuals without B. tectorum. Thus, B. tectorum competes with native species for soil water and negatively affects their wate status and productivity, but the competition for water does not affect water use efficiency of the native species. These adverse effects of B. tectorum competition on the productivity and water status of native species are also evident at 12 years after a fire. This competitive ability of B. tectorum greatly enhances its capability to exploit soil resources after fire and to enhance its status in the community.  相似文献   

12.
Zou J  Rogers WE  DeWalt SJ  Siemann E 《Oecologia》2006,150(2):272-281
The EICA hypothesis predicts that shifts in allocation of invasive plants give rise to higher growth rates and lower herbivore defense levels in their introduced range than conspecifics in their native range. These changes in traits of invasive plants may also affect ecosystem processes. We conducted an outdoor pot experiment with Chinese tallow tree (Sapium sebiferum, Euphorbiaceae) seedlings from its native (Jiangsu, China, native ecotype) and introduced ranges (Texas, USA, invasive ecotype) to compare their relative performances in its native range and to examine ecotype effects on soil processes with and without fertilization. Consistent with predictions, plant (shoot and root) mass was significantly greater and leaf defoliation tended to be higher, while the root:shoot ratio was lower for the invasive ecotype relative to the native ecotype. Seasonal amounts of soil–plant system CO2 and N2O emissions were higher for the invasive ecotype than for the native ecotype. Soil respiration rates and N2O emission increases from fertilization were also greater for the invasive ecotype than for the native ecotype, while shoot-specific respiration rates (g CO2–C g−1 C day−1) did not differ between ecotypes. Further, soil inorganic N (ammonium and nitrate) was higher, but soil total N was lower for soils with the invasive ecotype than soils with the native ecotype. Compared with native ecotypes, therefore, invasive ecotypes may have developed a competition advantage in accelerating soil processes and promoting more nitrogen uptake through soil–plant direct interaction. The results of this study suggest that soil and ecosystem processes accelerated by variation in traits of invasive plants may have implications for their invasiveness.  相似文献   

13.
Greenhouse experiments were undertaken to identify soil factors that curtail growth of the exotic annual grass Bromus tectorum L. (cheatgrass) without significantly inhibiting growth of native perennial grasses (here represented by Hilaria jamesii [Torr.] Benth). We grew B. tectorum and H. jamesii alone (monoculture pots) and together (combination pots) in soil treatments that manipulated levels of soil phosphorus, potassium, and sodium. Hilaria jamesii showed no decline when its aboveground biomass in any of the applied treatments was compared to the control in either the monoculture or combination pots. Monoculture pots of B. tectorum showed a decline in aboveground biomass with the addition of Na2HPO4 and K2HPO4. Interestingly, in pots where H. jamesii was present, the negative effect of these treatments was ameliorated. Whereas the presence of B. tectorum generally decreased the aboveground biomass of H. jamesii (comparing aboveground biomass in monoculture versus combination pots), the presence of H. jamesii resulted in an enhancement of B. tectorum aboveground biomass by up to 900%. We hypothesize that B. tectorum was able to obtain resources from H. jamesii, an action that benefited B. tectorum while generally harming H. jamesii. Possible ways resources may be gained by B. tectorum from native perennial grasses include (1) B. tectorum is protected from salt stress by native plants or associated soil biota; (2) when B. tectorum is grown with H. jamesii, the native soil biota is altered in a way that favors B. tectorum growth, including B. tectorum tapping into the mycorrhizal network of native plants and obtaining resources from them; (3) B. tectorum can take advantage of root exudates from native plants, including water and nutrients released by natives via hydraulic redistribution; and (4) B. tectorum is able to utilize some combination of the above mechanisms. In summary, land managers may find adding soil treatments can temporarily suppress B. tectorum and enhance the establishment of native plants. However, the extirpation of B. tectorum is unlikely, as many native grasses are likely to facilitate its growth.  相似文献   

14.
Phenotypic plasticity is an important plant trait associated with invasiveness of alien plants that reflects its ability to occupy a wide range of environments. We investigated the phenotypic response of Chenopodium murale to resource variability and ontogeny. Its plant-level and leaf-level traits were studied at high-resource (HR) and low-resource (LR) sites in peri-urban areas in Indian dry tropics. Plants at LR had significantly higher root length, root/shoot biomass ratio, stem mass and root mass fractions. Plants at HR had higher shoot length, basal diameter, leaf mass fraction and leaf area ratio. Leaf-level traits like leaf area and chlorophyll a were also higher here. Mean plasticity indices for plant- and leaf-level traits were higher at HR. With increasing total plant biomass, there was significant increase in the biomass of leaf, stem, root, and reproductive parts, and root and shoot lengths, whereas root/shoot length ratio, their biomass ratio, and leaf and root mass fractions declined significantly. Allocation to roots and leaves significantly decreased with increasing plant size at both sites. But, at any size, allocation to roots was greater at LR, indicative of optimization of capture of soil nutrients, whereas leaf allocation was higher at HR. Consistently increasing stem allocation equaled leaf allocation at comparatively higher shoot lengths at HR. Reproductive biomass comprised 10–12% of the plant’s total biomass. In conclusion, the success of alien weed C. murale across environmentally diverse habitat conditions in Indian dry tropics can be attributed to its high phenotypic plasticity, resource utilization capability in low-resource habitats and higher reproductive potential. These characteristics suggest that it will continue to be an aggressive invader.  相似文献   

15.
Species can respond to environmental pressures through genetic and epigenetic changes and through phenotypic plasticity, but few studies have evaluated the relationships between genetic differentiation and phenotypic plasticity of plant species along changing environmental conditions throughout wide latitudinal ranges. We studied inter‐ and intrapopulation genetic diversity (using simple sequence repeats and chloroplast DNA sequencing) and inter‐ and intrapopulation phenotypic variability of 33 plant traits (using field and common‐garden measurements) for five populations of the invasive cordgrass Spartina densiflora Brongn. along the Pacific coast of North America from San Francisco Bay to Vancouver Island. Studied populations showed very low genetic diversity, high levels of phenotypic variability when growing in contrasted environments and high intrapopulation phenotypic variability for many plant traits. This intrapopulation phenotypic variability was especially high, irrespective of environmental conditions, for those traits showing also high phenotypic plasticity. Within‐population variation represented 84% of the total genetic variation coinciding with certain individual plants keeping consistent responses for three plant traits (chlorophyll b and carotenoid contents, and dead shoot biomass) in the field and in common‐garden conditions. These populations have most likely undergone genetic bottleneck since their introduction from South America; multiple introductions are unknown but possible as the population from Vancouver Island was the most recent and one of the most genetically diverse. S. densiflora appears as a species that would not be very affected itself by climate change and sea‐level rise as it can disperse, establish, and acclimate to contrasted environments along wide latitudinal ranges.  相似文献   

16.
Whole genome duplication, leading to polyploidy and endopolyploidy, occurs in all domains and kingdoms and is especially prevalent in vascular plants. Both polyploidy and endopolyploidy increase cell size, but it is unclear whether both processes have similar effects on plant morphology and function, or whether polyploidy influences the magnitude of endopolyploidy. To address these gaps in knowledge, fifty‐five geographically separated diploid accessions of Arabidopsis thaliana that span a gradient of endopolyploidy were experimentally manipulated to induce polyploidy. Both the diploids and artificially induced tetraploids were grown in a common greenhouse environment and evaluated with respect to nine reproductive and vegetative characteristics. Induced polyploidy decreased leaf endopolyploidy and stem endopolyploidy along with specific leaf area and stem height, but increased days to bolting, leaf size, leaf dry mass, and leaf water content. Phenotypic responses to induced polyploidy varied significantly among accessions but this did not affect the relationship between phenotypic traits and endopolyploidy. Our results provide experimental support for a trade‐off between induced polyploidy and endopolyploidy, which caused induced polyploids to have lower endopolyploidy than diploids. Though polyploidy did not influence the relationship between endopolyploidy and plant traits, phenotypic responses to experimental genome duplication could not be easily predicted because of strong cytotype by accession interactions.  相似文献   

17.
It has been assumed that herbivores constitute a selective agent for the evolution of plant resistance. However, few studies have tested this hypothesis. In this study, we look at the annual weed Datura stramonium for evidence of current natural selection for resistance to herbivorous insects. Paternal half-sib families obtained through controlled crosses were exposed to herbivores under natural conditions. The plants were damaged by two folivorous insects: the tobacco flea beetle Epitrix parvula and the grasshopper Sphenarium purpurascens. Selection was estimated using a multiple-regression analysis of plant size and of damage by the two herbivores on plant fitness measured as fruit production for both individual phenotypes and family breeding values (genetic analysis). Directional phenotypic selection was detected for both larger plant size and lower resistance to the flea beetles, whereas stabilizing phenotypic selection was revealed for resistance to S. purpurascens. However, performing the same analyses on the breeding values of the characters revealed directional and stabilizing selection only for plant size. Thus, no agreement existed between the results of the two types of analyses, nor was there any detectable potential for genetic change in the studied population because of selection on herbivore resistance. The narrow-sense heritability of every trait studied was small (all <0.1) and not different from zero. The potential for evolutionary response to natural selection for higher resistance to herbivores in the studied population of D. stramonium is probably limited by lack of genetic variation. Natural selection acts on phenotypes, and the detection of phenotypic selection on resistance to herbivores confirms their ecological importance in determining plant fitness. However, evolutionary inferences based solely on phenotypic selection analyses must be interpreted with caution.  相似文献   

18.
The invasive grasses Bromus rubens and Bromus tectorum are responsible for widespread damage to semiarid biomes of western North America. Bromus. tectorum dominates higher and more northern landscapes than its sister species B. rubens, which is a severe invader in the Mojave desert region of the American Southwest. To assess climate thresholds controlling their distinct geographic ranges, we evaluated the winter cold tolerance of B. tectorum and B. rubens. Freezing tolerance thresholds were determined using electrolyte leakage and whole‐plant mortality. The responses of the two species to winter cold and artificial freezing treatments were similar in 2007–2008 and 2009–2010. When grown at minimum temperatures of 10 °C, plants of both species had cold tolerance thresholds near ?10 °C, while plants acclimated to a daily minimum of ?10 to ?30 °C survived temperatures down to ?31 °C. In the winter of 2010–2011, a sudden severe cold event on December 9, 2010 killed all B. rubens populations, while B. tectorum was not harmed; all tested plants were 7–8 weeks old. Controlled acclimation experiments demonstrated that 8‐week‐old plants of B. rubens had a slower acclimation rate to subzero temperatures than B. tectorum and could not survive a rapid temperature drop from 1 to ?14 °C. Four‐month‐old B. rubens populations were as cold tolerant as B. tectorum. Our results show that severe and sudden freeze events in late autumn can kill young plants of B. rubens but not B. tectorum. Such events could exclude B. rubens from the relatively cold, Intermountain steppe biome of western North America where B. tectorum predominates.  相似文献   

19.
Both differences in local plant density and phenotypic traits may affect pollination and plant reproduction, but little is known about how density affects trait–fitness relationships via changes in pollinator activity. In this study we examined how plant density and traits interact to determine pollinator behaviour and female reproductive success in the self‐incompatible, perennial herb Phyteuma spicatum. Specifically, we hypothesised that limited pollination service in more isolated plants would lead to increased selection for traits that attract pollinators. We conducted pollinator observations and assessed trait–fitness relationships in a natural population, whose individuals were surrounded by a variable number of inflorescences. Both local plant density and plant phenotypic traits affected pollinator foraging behaviour. At low densities, pollinator visitation rates were low, but increased with increasing inflorescence size, while this relationship disappeared at high densities, where visitation rates were higher. Plant fitness, in terms of seed production per plant and per capsule, was related to both floral display size and flowering time. Seed production increased with increasing inflorescence size and was highest at peak flowering. However, trait–fitness relationships were not density‐dependent, and differences in seed production did not appear to be related to differences in pollination. The reasons for this remain unclear, and additional studies are needed to fully understand and explain the observed patterns.  相似文献   

20.
Phenotypic plasticity is essential for plant adaptation to changing environments but some factors limit its expression, causing plants to fail in producing the best phenotype for a given environment. Phenotypic integration refers to the pattern and magnitude of character correlations and it might play a role as an internal constraint to phenotypic plasticity. We tested the hypothesis that phenotypic integration – estimated as the number of significant phenotypic correlations between traits – constrains phenotypic plasticity of plants. The rationale is that, for any phenotypic trait, the more linked with other traits it is, the more limited is its range of variation. In the perennial species Convolvulus chilensis (Convolvulaceae) and Lippia alba (Verbenaceae) we determined the relationship between phenotypic plasticity to relevant environmental factors – shading for C. chilensis and drought for L. alba– and the magnitude of phenotypic integration of morphological and biomass allocation traits. In C. chilensis plants, plasticity to shading of a given trait decreased with the number of significant correlations that it had with the other traits. Likewise, the characters that showed greater plasticity to experimental drought in L. alba plants had fewer significant phenotypic correlations with other characters. We report a novel limit to phenotypic plasticity of plants by showing that the phenotypic trait architecture may constrain their plastic, functional responses to the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号