共查询到20条相似文献,搜索用时 15 毫秒
1.
Utility of mitochondrial‐encoded cytochrome c oxidase I gene for phylogenetic analysis and species identification of the planktonic diatom genus Skeletonema
下载免费PDF全文
Machiko Yamada Mayuko Otsubo Yuki Tsutsumi Chiaki Mizota Yuka Nakamura Kazuya Takahashi Mitsunori Iwataki 《Phycological Research》2017,65(3):217-225
Small subunit (SSU) and large subunit (LSU) rDNA sequences have been commonly used to delineate the taxonomy and biogeography of the planktonic diatom genus Skeletonema, but the genes occur as multiple copies and are therefore not suitable for barcoding purposes. Here, we analyzed phylogenetic relationships of Skeletonema using the mitochondrial‐encoded cytochrome c oxidase I gene (cox1), as well as partial LSU rDNA (D1–D3) and SSU rDNA, to identify the factors that define species and to evaluate the utility of these three markers for this taxon. Twelve Skeletonema species were divided into six clades, I–VI, each of which comprised the same species by the three markers: clades I (S. japonicum, S. grethae, S. pseudocostatum, and S. tropicum), II (S. menzelii), III (S. dohrnii and S. marinoi), IV (S. costatum, S. potamos, and S. subsalsum), V (S. grevillei), and VI (S. ardens). However, the branching order among these clades was incongruent among the markers. In clade III, six S. marinoi strains had identical cox1 sequences. These S. marinoi strains branched along with S. dohrnii, except for strains from the Gulf of Naples, with high support in cox1. Species delimitation between S. dohrnii and S. marinoi was therefore not supported. In clade IV, S. costatum and S. subsalsum were robustly clustered, with S. potamos as a sister clade in the cox1 tree, not in the LSU and SSU trees. In clade II, cox1 also confirmed that S. menzelii includes three subclades potentially distinguishable from each other by morphological features. Cox1 proved to be the most useful marker for the identification of Skeletonema species because it gave a tree with highly supported clades, has sufficient variation within and among species, encodes a protein in a single copy, and requires relatively few primers. 相似文献
2.
Maja Mucko Sun
ica Bosak David G. Mann Rosa Trobajo Carlos E. Wetzel Petra Peharec tefani Zrinka Ljubei 《Journal of phycology》2021,57(1):143-159
The paraphyletic diatom genus Nitzschia comprises over 1000 morphologically distinct pennate taxa, known from the benthos and plankton of freshwater, brackish, and marine environments. The principal diagnostic characters for delimitation of Nitzschia species include valve shape, the position and structure of the raphe, presence/absence and shape of the proximal raphe endings and terminal raphe fissures, areola structure, and specific morphometric features such as cell size, and stria and fibula density. In this study, we isolated 12 diatom strains into culture from samples collected at the surface or greater depths of the southeastern Adriatic Sea. Morphological analyses included LM, SEM, and TEM observations, which, along with specific morphometric features, allowed us to distinguish three new Nitzschia species. These findings were congruent with the results of phylogenetic analyses performed on nuclear‐encoded SSU (18S) rDNA and chloroplast‐encoded rbcL and psbC genes. One of the new species (Nitzschia dalmatica sp. nov.) formed a lineage within a clade of Bacillariaceae containing members of the Nitzschia sect. Dubiae, which was sister to Psammodictyon. A second lineage was part of a novel clade that is significantly distinct from other Nitzschia species sequenced so far and includes Nitzschia adhaerens sp. nov. and N. cf. adhaerens. A further new species was found, Nitzschia inordinata sp. nov., which appeared as the sister group to the N. adhaerens clade and the conopeoid Nitzschia species in our phylogenetic trees. Our findings contribute to the overall diversity of genus Nitzschia, especially in identifying some deep branches within the Bacillariaceae, and highlight under‐scoring of this genus in marine plankton. 相似文献
3.
4.
5.
Laia Rovira Rosa Trobajo Shinya Sato Carles Ibáñez David G. Mann 《The Journal of eukaryotic microbiology》2015,62(6):815-832
Nitzschia inconspicua is an ecologically important diatom species, which is believed to have a widespread distribution and to be tolerant to salinity and to organic or nutrient pollution. However, its identification is not straightforward and there is no information on genetic and ecophysiological diversity within the species. We used morphological, molecular (rbcL and LSU D1–D3), ecophysiological and reproductive data to investigate whether N. inconspicua constitutes a single species with a broad ecological tolerance or two or more cryptic species with shared or different ecological preferences. Molecular genetic data for clones from upstream and deltaic sites in the Ebro River basin (Catalonia, Spain) revealed seven N. inconspicua rbcL + LSU genotypes grouped into three major clades. Two of the clades were related to other Nitzschia and Denticula species, making N. inconspicua paraphyletic and suggesting the need for taxonomic revision. Most clones were observed to be automictic, exhibiting paedogamy, and so the biological species concept cannot be used to establish species boundaries. Although there were morphological differences among clones, we found no consistent differences among genotypes belonging to different clades, which are definable only through sequence data. Nevertheless, separating the genotypes could be important for ecological purposes because two different ecophysiological responses were encountered among them. 相似文献
6.
Kazuki Sugawara Hidekazu Suzuki Mitsunobu Kamiya Keigo Osada Andrzej Witkowski 《Phycological Research》2023,71(4):182-192
The canal-bearing diatom genus Nagumoea, described based on only morphological evidence, was tentatively assigned to the order Bacillariales, although its phylogenetic position remained unclear. Because three isolates of Nagumoea (SK002, SK024 and SK053) were successfully established from Japanese coasts, we performed their morphological observations and molecular phylogenetic analyses to discuss the phylogeny and taxonomic position of this genus. Strains SK002 and SK024 were identified as Nagumoea africana, whereas SK053 conformed with Nagumoea serrata. There was high interspecific divergence between N. africana and N. serrata in the rbcL sequences (8.03–8.17%), indicating their distinctness. Furthermore, intraspecific variations were detected within N. africana (2.35%) in the rbcL, implying its cryptic diversity. The maximum likelihood and Bayesian phylogenetic trees inferred from the plastid rbcL, psbC and nuclear 18S rDNA genes recovered Nagumoea as monophyletic with strong statistical support and embedded within an unresolved, poorly supported lineage containing Achnanthes, Craspedostauros, Staurotropis and Undatella in the canal-bearing order Bacillariales (= the family Bacillariaceae). Although the constrained tree based on the monophyly of Nagumoea and the other canal-bearing clade (Surirellales and Rhopalodiales) was statistically rejected by the topology tests, the phylogenetic position of Nagumoea with other Bacillarialean members remains equivocal. The possession of two plastids positioned fore and aft, observed in the present study, and lack of keel, typical of the Bacillariales, indicate the possibility of Nagumoea being part of the ingroup of the Bacillariales or its closely related outgroup. 相似文献
7.
Penelope A. Dawson 《欧洲藻类学杂志》2013,48(4):413-423
Gomphonema acuminatum var. coronatum Ehrenb., G. capitatum Ehrenb., G. constrictum Ehrenb., G. gracile Ehrenb., G. intricatum var. vibrio Ehrenb., G. subclavatum Grun. and G. ventricosum Greg. all conform to the basic features of the genus Gomphonema C. Ag. as exemplified by detailed electron microscopical studies of G. parvulum Kütz. This biraphidaceous diatom genus is characterised by heteropolar, asymmetrical cells which have a single isolated punctum, displaced somewhat from the centre of the valve. Electron microscopical observations reveal a reniform or horseshoe-shaped poroidal structure to the valve. It is suggested that this is found only in “true” members of the genus Gomphonema. Other “gomphonemoid” types with differing pore structure should be removed into related genera. 相似文献
8.
Phylogeny and species delineation in the marine diatom Pseudo‐nitzschia (Bacillariophyta) using cox1, LSU,and ITS2 rRNA genes: A perspective in character evolution 下载免费PDF全文
Hong Chang Lim Suh Nih Tan Sing Tung Teng Nina Lundholm Emma Orive Helena David Sonia Quijano‐Scheggia Sandric Chee Yew Leong Matthias Wolf Stephen S. Bates Po Teen Lim Chui Pin Leaw 《Journal of phycology》2018,54(2):234-248
Analyses of the mitochondrial cox1, the nuclear‐encoded large subunit (LSU), and the internal transcribed spacer 2 (ITS2) RNA coding region of Pseudo‐nitzschia revealed that the P. pseudodelicatissima complex can be phylogenetically grouped into three distinct clades (Groups I–III), while the P. delicatissima complex forms another distinct clade (Group IV) in both the LSU and ITS2 phylogenetic trees. It was elucidated that comprehensive taxon sampling (sampling of sequences), selection of appropriate target genes and outgroup, and alignment strategies influenced the phylogenetic accuracy. Based on the genetic divergence, ITS2 resulted in the most resolved trees, followed by cox1 and LSU. The morphological characters available for Pseudo‐nitzschia, although limited in number, were overall in agreement with the phylogenies when mapped onto the ITS2 tree. Information on the presence/absence of a central nodule, number of rows of poroids in each stria, and of sectors dividing the poroids mapped onto the ITS2 tree revealed the evolution of the recently diverged species. The morphologically based species complexes showed evolutionary relevance in agreement with molecular phylogeny inferred from ITS2 sequence–structure data. The data set of the hypervariable region of ITS2 improved the phylogenetic inference compared to the cox1 and LSU data sets. The taxonomic status of P. cuspidata and P. pseudodelicatissima requires further elucidation. 相似文献
9.
Morphological diversity and phylogeny of the diatom genus Entomoneis (Bacillariophyta) in marine plankton: six new species from the Adriatic Sea 下载免费PDF全文
Maja Mejdandžić Sunčica Bosak Teofil Nakov Elizabeth Ruck Sandi Orlić Marija Gligora Udovič Petra Peharec Štefanić Igor Špoljarić Gordan Mršić Zrinka Ljubešić 《Journal of phycology》2018,54(2):275-298
10.
11.
Two New Brackish Ciliates,Amphileptus spiculatus sp. n. and A. bellus sp. n. from Mangrove Wetlands in Southern China,with Notes on the Molecular Phylogeny of the Family Amphileptidae (Protozoa,Ciliophora, Pleurostomatida) 下载免费PDF全文
Lei Wu Zhenzhen Yi Jiqiu Li Alan Warren Hualin Xu Xiaofeng Lin 《The Journal of eukaryotic microbiology》2015,62(5):662-669
Two new brackish pleurostomatid ciliates, Amphileptus spiculatus sp. n. and A. bellus sp. n. were collected from mangrove wetlands of southern China and their morphology and molecular phylogeny were studied. Amphileptus spiculatus sp. n. can be distinguished from congeners by the presence of 11–14 right and 6–8 left kineties, two macronuclear nodules and a conspicuous beak‐like anterior body end. Amphileptus bellus sp. n. is characterized by the presence of 2–4 macronuclear nodules, 31–35 right and 6 or 7 left kineties and two types of extrusomes. Phylogenetic analyses based on SSU rDNA sequences data indicate that the family Amphileptidae is paraphyletic. 相似文献
12.
Rhodenigma contortum,an obscure new genus and species of Rhodogorgonales (Rhodophyta) from Western Australia 下载免费PDF全文
John A. West Giuseppe C. Zuccarello Susan Loiseaux de Goër Lambros A. Stavrias Heroen Verbruggen 《Journal of phycology》2016,52(3):397-403
An unknown microscopic, branched filamentous red alga was isolated into culture from coral fragments collected in Coral Bay, Western Australia. It grew well unattached or attached to glass with no reproduction other than fragmentation of filaments. Cells of some branch tips became slightly contorted and digitated, possibly as a substrate‐contact‐response seen at filament tips of various algae. Attached multicellular compact disks on glass had a very different cellular configuration and size than the free filaments. In culture the filaments did not grow on or in coral fragments. Molecular phylogenies based on four markers (rbcL, cox1, 18S, 28S) clearly showed it belongs to the order Rhodogorgonales, as a sister clade of Renouxia. Based on these results, the alga is described as the new genus and species Rhodenigma contortum in the Rhodogorgonaceae. It had no morphological similarity to either of the other genera in Rhodogorgonaceae and illustrates the unknown diversity in cryptic habitats such as tropical coral rubble. 相似文献
13.
Saleh A. Al‐Farraj Xiaofeng Lin Xiaozhong Hu 《The Journal of eukaryotic microbiology》2017,64(2):144-152
The ciliate genus Protocruzia is a highly confused group, which was formerly placed in the class Heterotrichea or Karyorelictea, and is according to the most recent system tentatively assigned to the class Spirotrichea. In the present study, the morphology, ciliary pattern, and molecular phylogeny of two poorly known species, Protocruzia tuzeti Villeneuve‐Brachon, 1940, and Protocruzia granulosa Kahl, 1933, isolated from coastal waters of China, were investigated. Protocruzia tuzeti differs from its congeners mainly in possessing 6 adoral membranelles, 8–11 somatic kineties, and postoral dikinetids. Protocruzia granulosa is characterized by its extremely slender body, three postoral kineties, and 13 or 14 somatic kineties. The morphogenesis of P. granulosa is similar to that of P. tuzeti, especially in the parakinetal mode of stomatogenesis and the reorganization of the parental paroral membrane; however, more than one somatic kinety joins in the formation of the oral primordium in P. granulosa. Phylogenetic analyses based on small subunit ribosomal RNA gene revealed that six Protocruzia species form a fully supported clade that does not belong to any ciliate class; therefore, our data support the establishment of the class Protocruziea Gao et al. (Sci. Rep., 6, 2016, 24874). 相似文献
14.
Olga Camacho Cindy Fernndez‐García Christophe Vieira Carlos Frederico D. Gurgel James N. Norris David Wilson Freshwater Suzanne Fredericq 《Journal of phycology》2019,55(3):611-624
Lobophora is a common tropical to temperate genus of brown algae found in a plethora of habitats including shallow and deep‐water coral reefs, rocky shores, mangroves, seagrass beds, and rhodoliths beds. Recent molecular studies have revealed that Lobophora species diversity has been severely underestimated. Current estimates of the species numbers range from 100 to 140 species with a suggested center of diversity in the Central Indo‐Pacific. This study used three molecular markers (cox3, rbcL, psbA), different single‐marker species delimitation methods (GMYC, ABGD, PTP), and morphological evidence to evaluate Lobophora species diversity in the Western Atlantic and the Eastern Pacific oceans. Cox3 provided the greatest number of primary species hypotheses(PSH), followed by rbcL and then psbA. GMYC species delimitation analysis was the most conservative across all three markers, followed by PTP, and then ABGD. The most informative diagnostic morphological characters were thallus thickness and number of cell layers in both the medulla and the dorsal/ventral cortices. Following a consensus approach, 14 distinct Lobophora species were identified in the Western Atlantic and five in the Eastern Pacific. Eight new species from these two oceans were herein described: L. adpressa sp. nov., L. cocoensis sp. nov., L. colombiana sp. nov., L. crispata sp. nov., L. delicata sp. nov., L. dispersa sp. nov., L. panamensis sp. nov., and L. tortugensis sp. nov. This study showed that the best approach to confidently identify Lobophora species is to analyze DNA sequences (preferably cox3 and rbcL) followed by comparative morphological and geographical assessment. 相似文献
15.
Description of the Halophile Euplotes qatarensis nov. spec. (Ciliophora,Spirotrichea, Euplotida) Isolated from the Hypersaline Khor Al‐Adaid Lagoon in Qatar 下载免费PDF全文
Rashmi Fotedar Thorsten Stoeck Sabine Filker Jack W. Fell Sabine Agatha Masoud Al Marri Jiamei Jiang 《The Journal of eukaryotic microbiology》2016,63(5):578-590
The morphology, ontogenesis, and phylogenetic relationships of a halophile euplotid ciliates, Euplotes qatarensis nov. spec., isolated from the Khor Al‐Adaid Lagoon in Qatar were investigated based on live observation as well as protargol‐ and silver nitrate‐impregnated methods. The new species is characterised by a combination of features: the halophile habitat, a cell size of 50–65 × 33–40 μm, seven dorsal ridges, 10 commonly sized frontoventral cirri, two widely spaced marginal cirri, 10 dorsolateral kineties, and a double silverline pattern. The morphogenesis is similar to that of its congeners: (i) the oral primordium develops hypoapokinetally and the parental oral apparatus is retained; (ii) the frontoventral‐transverse field of five streaks gives rise to the frontal, ventral, and transverse cirri, but not to the cirri I/1 and the marginal cirri; (iii) the dorsal somatic ciliature develops by intrakinetal proliferation of basal bodies in two anlagen per kinety that are just anterior and posterior to the future division furrow; (iv) the caudal cirri are formed by the two rightmost dorsolateral kineties. The SSU rDNA sequence of E. qatarensis branches with full support in the Euplotopsis elegans–Euplotes nobilii–Euplotopsis raikovi clade. The closest related publicly available SSU rDNA sequence is the one of E. nobilii, with which E. qatarensis has 93.4% sequence similarity. Euplotes parawoodruffi Song & Bradbury, 1997 is transferred to the genus Euplotoides based on the absence of frontoventral cirrus VI/3. 相似文献
16.
17.
Christophe Vieira Olivier De Clerck Laurent Millet Claude E. Payri 《Phycological Research》2019,67(3):228-238
Sampling in the framework of the research program called ‘La Planète Revisitée’ in Kavieng and Madang (Papua New Guinea) brought thus far unknown diversity of the brown algal genus Lobophora to the surface. DNA‐assisted alpha taxonomy allowed identifying the presence of 16 species Lobophora from these two localities, which only share four species in common. Ten species are newly described, including four, which are only known to the Bismarck Sea. A more exhaustive sampling across the Bismarck Sea, and more largely across the Coral Triangle, will very likely unveil an even greater diversity. The present study underscores the fragmentary nature of our knowledge of macroalgal diversity in this region. 相似文献
18.
A Contribution to the Morphology and Phylogeny of Chlamydodon,with Three New Species from China (Ciliophora,Cyrtophoria) 下载免费PDF全文
Zhishuai Qu Hongbo Pan Xiaofeng Lin Lifang Li Abdullah Mohammad A. Aleidan Saleh A. Al‐Farraj Thorsten Stoeck Xiaozhong Hu 《The Journal of eukaryotic microbiology》2018,65(2):236-249
Three new cyrtophorian ciliates isolated from coastal areas of China were described based on morphological and genetic data. The Chlamydodon mnemosyne‐like species Chlamydodon similis sp. n. differs from its congeners mainly by its number of somatic kineties. Chlamydodon oligochaetus sp. n. is distinguished from its congeners mainly by having fewer somatic kineties, and/or an elongated body shape. Chlamydodon crassidens sp. n. is characterized mainly by an inverted triangular body shape, a posteriorly interrupted cross‐striated band (5–6 μm wide), and a large cytostome. Moreover, we provided small‐subunit (SSU) rDNA sequences of C. similis sp. n. and C. oligochaetus sp. n. Maximum likelihood (ML) and Bayesian inference (BI) consistently placed C. similis sp. n. as a sister to C. paramnemosyne, but showed different branching position of C. oligochaetus sp. n., which may be due to a low taxon sampling in the Chlamydodontidae and/or an insufficient resolution of the marker gene at species level. 相似文献
19.
Laura Pezzolesi Viviana Pea Line Le Gall Paul W. Gabrielson Sara Kaleb Jeffery R. Hughey Graziella Rodondi Jazmin J. Hernandez‐Kantun Annalisa Falace Daniela Basso Carlo Cerrano Fabio Rindi 《Journal of phycology》2019,55(2):473-492
Lithophyllum species in the Mediterranean Sea function as algal bioconstructors, contributing to the formation of biogenic habitats such as coralligenous concretions. In such habitats, thalli of Lithophyllum, consisting of crusts or lamellae with entire or lobed margins, have been variously referred to as either one species, L. stictiforme, or two species, L. stictiforme and L. cabiochiae, in the recent literature. We investigated species diversity and phylogenetic relationships in these algae by sequencing three markers (psbA and rbcL genes, cox2,3 spacer), in conjunction with methods for algorithmic delimitation of species (ABGD and GMYC). Mediterranean subtidal Lithophyllum belong to a well‐supported lineage, hereby called the L. stictiforme complex, which also includes two species described from the Atlantic, L. lobatum and L. searlesii. Our results indicate that the L. stictiforme complex consists of at least 13 species. Among the Mediterranean species, some are widely distributed and span most of the western and central Mediterranean, whereas others appear to be restricted to specific localities. These patterns are interpreted as possibly resulting from allopatric speciation events that took place during the Messinian Salinity Crisis and subsequent glacial periods. A partial rbcL sequence from the lectotype of L. stictiforme unambiguously indicates that this name applies to the most common subtidal Lithophyllum in the central Mediterranean. We agree with recent treatments that considered L. cabiochiae and L. stictiforme conspecific. The diversity of Lithophyllum in Mediterranean coralligenous habitats has been substantially underestimated, and future work on these and other Mediterranean corallines should use identifications based on DNA sequences. 相似文献
20.
Emily T. Johnston Kyatt R. Dixon John A. West Nurliah Buhari Morgan L. Vis 《Journal of phycology》2018,54(2):159-170
The freshwater red algal order Thoreales has triphasic life history composed of a diminutive diploid “Chantransia” stage, a distinctive macroscopic gametophyte with multi‐axial growth and carposporophytes that develop on the gametophyte thallus. This order is comprised of two genera, Thorea and Nemalionopsis. Thorea has been widely reported with numerous species, whereas Nemalionopsis has been more rarely observed with only a few species described. DNA sequences from three loci (rbcL, cox1, and LSU) were used to examine the phylogenetic affinity of specimens collected from geographically distant locations including North America, South America, Europe, Pacific Islands, Southeast Asia, China, and India. Sixteen species of Thorea and two species of Nemalionopsis were recognized. Morphological observations confirmed the distinctness of the two genera and also provided some characters to distinguish species. However, many of the collections were in “Chantransia” stage rather than gametophyte stage, meaning that key diagnostic morphological characters were unavailable. Three new species are proposed primarily based on the DNA sequence data generated in this study, Thorea kokosinga‐pueschelii, T. mauitukitukii, and T. quisqueyana. In addition to these newly described species, one DNA sequence from GenBank was not closely associated with other Thorea clades and may represent further diversity in the genus. Two species in Nemalionopsis are recognized, N. shawii and N. parkeri nom. et stat. nov. Thorea harbors more diversity than had been recognized by morphological data alone. Distribution data indicated that Nemalionopsis is common in the Pacific region, whereas Thorea is more globally distributed. Most species of Thorea have a regional distribution, but Thorea hispida appears to be cosmopolitan. 相似文献