首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Wnt signal transduction controls tissue morphogenesis, maintenance and regeneration in all multicellular animals. In mammals, the WNT/CTNNB1 (Wnt/β‐catenin) pathway controls cell proliferation and cell fate decisions before and after birth. It plays a critical role at multiple stages of embryonic development, but also governs stem cell maintenance and homeostasis in adult tissues. However, it remains challenging to monitor endogenous WNT/CTNNB1 signaling dynamics in vivo. Here, we report the generation and characterization of a new knock‐in mouse strain that doubles as a fluorescent reporter and lineage tracing driver for WNT/CTNNB1 responsive cells. We introduced a multi‐cistronic targeting cassette at the 3′ end of the universal WNT/CTNNB1 target gene Axin2. The resulting knock‐in allele expresses a bright fluorescent reporter (3xNLS‐SGFP2) and a doxycycline‐inducible driver for lineage tracing (rtTA3). We show that the Axin2P2A‐rtTA3‐T2A‐3xNLS‐SGFP2 strain labels WNT/CTNNB1 responsive cells at multiple anatomical sites during different stages of embryonic and postnatal development. It faithfully reports the subtle and dynamic changes in physiological WNT/CTNNB1 signaling activity that occur in vivo. We expect this mouse strain to be a useful resource for biologists who want to track and trace the location and developmental fate of WNT/CTNNB1 responsive stem cells in different contexts.  相似文献   

5.
Mitogen‐activated protein kinase (MAPK) signaling plays important roles in diverse biological processes. In Arabidopsis, MPK3/MPK6, MKK4/MKK5, and the MAPKKK YODA (YDA) form a MAPK pathway that negatively regulates stomatal development. Brassinosteroid (BR) stimulates this pathway to inhibit stomata production. In addition, MPK3/MPK6 and MKK4/MKK5 also serve as critical signaling components in plant immunity. Here, we report that MAPKKK3/MAPKKK5 form a kinase cascade with MKK4/MKK5 and MPK3/MPK6 to transduce defense signals downstream of multiple plant receptor kinases. Loss of MAPKKK3/MAPKKK5 leads to reduced activation of MPK3/MPK6 in response to different pathogen‐associated molecular patterns (PAMPs) and increased susceptibility to pathogens. Surprisingly, developmental defects caused by silencing of YDA are suppressed in the mapkkk3 mapkkk5 double mutant. On the other hand, loss of YDA or blocking BR signaling leads to increased PAMP‐induced activation of MPK3/MPK6. These results reveal antagonistic interactions between a developmental MAPK pathway and an immune signaling MAPK pathway.  相似文献   

6.
7.
Arabidopsis thaliana brassinosteroid signaling kinases (BSKs) constitute a receptor‐like cytoplasmic kinase sub‐family (RLCK‐XII) with 12 members. Previous analysis demonstrated a positive role for BSK1 and BSK3 in the initial steps of brassinosteroid (BR) signal transduction. To investigate the function of BSKs in plant growth and BR signaling, we characterized T‐DNA insertion lines for eight BSK genes (BSK1–BSK8) and multiple mutant combinations. Simultaneous elimination of three BSK genes caused alterations in growth and the BR response, and the most severe phenotypes were observed in the bsk3,4,7,8 quadruple and bsk3,4,6,7,8 pentuple mutants, which displayed reduced rosette size, leaf curling and enhanced leaf inclination. In addition, upon treatment with 24‐epibrassinolide, these mutants showed reduced hypocotyl elongation, enhanced root growth and alteration in the expression of BR‐responsive genes. Some mutant combinations also showed antagonistic interactions. In support of a redundant function in BR signaling, multiple BSKs interacted in vivo with the BR receptor BRI1, and served as its phosphorylation substrates in vitro. The BIN2 and BIL2 GSK3‐like kinases, which are negative regulators of BR signaling, interacted in vivo with BSKs and phosphorylated them in vitro, probably at different sites to BRI1. This study demonstrates redundant biological functions for BSKs, and suggests the existence of a regulatory link between BSKs and GSK3‐like kinases.  相似文献   

8.
Azurin secreted by Pseudomonas aeruginosa is an anticancer bacteriocin, which preferentially enters human cancer cells and induces apoptosis or growth inhibition. It turns out that azurin is a multi‐target anticancer agent interfering in the p53 signaling pathway and the non‐receptor tyrosine kinases signaling pathway. This suggests that azurin exerts its anticancer activity by interacting with multiple targets and interfering in multiple steps in disease progression. Therefore, azurin could overcome resistance to therapy. Besides azurin, putative bacteriocins that possess functional properties similar to those of azurin have been identified in more bacteria species. A systematic investigation on the anticancer mechanisms of azurin and the azurin‐like bacteriocins will provide more and better options in cancer therapy. In this review, we summarize how azurin and the derived peptides hijack key cellular regulators or cell surface receptors to remodel the cellular signaling networks. In particular, we highlight the necessity of determining the structure of azurin/p53 complex and investigating the influence of post‐translational modifications on interactions between azurin and p53. Therapeutic applications of azurin and derived peptides are also discussed.  相似文献   

9.
The four species that comprise the Bufo boreas group of toads are critically imperiled in all or portions of their geographical ranges. We present data from 16 microsatellite loci isolated from B. boreas that cross‐amplify in these four species. These markers have proven useful in the analyses of population structure and conservation genetics, and provide a powerful tool for future researchers who seek to understand the conservation genetics of these rare toad species. Polymorphism was assessed for 339 individuals from seven populations representing the four species. All loci were polymorphic (X? = 8, range of four to 19 alleles). Three loci were not in Hardy–Weinberg equilibrium (HWE) in one population, and one of these loci was out of HWE in a second population (P < 0.003 after Bonferroni correction for multiple tests). However, there were no systematic deviations from HWE across all study populations. Small populations in fragmented habitat appear to explain the existing HWE deviations.  相似文献   

10.
11.
Wnt signaling is a major and highly conserved developmental pathway that guides many important events during embryonic and larval development. In adulthood, misregulation of Wnt signaling has been implicated in tumorigenesis and various age‐related diseases. These effects occur through highly complicated cell‐to‐cell interactions mediated by multiple Wnt‐secreted proteins. While they share a high degree of sequence similarity, their function is highly diversified. Although the role of Wnt ligands during development is well studied, very little is known about the possible actions of Wnt signaling in natural aging. In this study, Caenorhabditis elegans serves, for the first time, as a model system to determine the role of Wnt ligands in aging. Caenorhabditis elegans has five Wnt proteins, mom‐2, egl‐20, lin‐44, cwn‐1, and cwn‐2. We show that all five Wnt ligands are expressed and active past the development stages. The ligand mom‐2/Wnt plays a major detrimental role in longevity, whereas the function of lin‐44/Wnt is beneficial for long life. Interestingly, no evidence was found for Wnt signaling being involved in cellular or oxidative stress responses during aging. Our results suggest that Wnt signaling regulates aging‐intrinsic genetic pathways, opening a new research direction on the role of Wnt signaling in aging and age‐related diseases.  相似文献   

12.
The DevRS/DosT two‐component system is essential for mycobacterial survival under hypoxia, a prevailing stress within granulomas. DevR (also known as DosR) is activated by an inducing stimulus, such as hypoxia, through conventional phosphorylation by its cognate sensor kinases, DevS (also known as DosS) and DosT. Here, we show that the DevR regulon is activated by acetyl phosphate under ‘non‐inducing’ aerobic conditions when Mycobacterium tuberculosis devS and dosT double deletion strain is cultured on acetate. Overexpression of phosphotransacetylase caused a perturbation of the acetate kinase‐phosphotransacetylase pathway, a decrease in the concentration of acetyl phosphate and dampened the aerobic induction response in acetate‐grown bacteria. The operation of two pathways of DevR activation, one through sensor kinases and the other by acetyl phosphate, was established by an analysis of wild‐type DevS and phosphorylation‐defective DevSH395Q mutant strains under conditions partially mimicking a granulomatous‐like environment of acetate and hypoxia. Our findings reveal that DevR can be phosphorylated in vivo by acetyl phosphate. Importantly, we demonstrate that acetyl phosphate‐dependent phosphorylation can occur in the absence of DevR’s cognate kinases. Based on our findings, we conclude that anti‐mycobacterial therapy should be targeted to DevR itself and not to DevS/DosT kinases.  相似文献   

13.
In 2001, with‐no‐lysine (WNK) kinases were identified as the genes responsible for the human hereditary hypertensive disease pseudohypoaldosteronism type II (PHAII). It took a further 6 years to clarify that WNK kinases participate in a signaling cascade with oxidative stress‐responsive gene 1 (OSR1), Ste20‐related proline‐alanine‐rich kinase (SPAK), and thiazide‐sensitive NaCl cotransporter (NCC) in the kidney and the constitutive activation of this signaling cascade is the molecular basis of PHAII. Since this discovery, the WNK–OSR1/SPAK–NCC signaling cascade has been shown to be involved not only in PHAII but also in the regulation of blood pressure under normal and pathogenic conditions, such as hyperinsulinemia. However, the molecular mechanisms of WNK kinase regulation by dietary and hormonal factors and by PHAII‐causing mutations remain poorly understood. In 2012, two additional genes responsible for PHAII, Kelch‐like 3 (KLHL3) and Cullin3, were identified. At the time of their discovery, the molecular mechanisms underlying the interaction between these genes and their involvement in PHAII were unknown. Here we review the pathophysiological roles of the WNK signaling cascade clarified to date and introduce a new mechanism of WNK kinase regulation by KLHL3 and Cullin3, which provides insight on previously unknown mechanisms of WNK kinase regulation.  相似文献   

14.
Human NDR1/STK38 belongs to the nuclear‐Dbf2‐related (NDR) family of Ser/Thr kinases. It has been implicated to function in centrosome duplication, control of cell cycle and apoptosis. However, the mechanism of NDR1 signaling pathway remains largely elusive. Here, we report a novel role of NDR1 in NF‐κB activation. By overexpression, NDR1 potentiates NF‐κB activation induced by TNFα, whereas knockdown of NDR1 expression inhibits NF‐κB activation induced by TNFα. Coimmunoprecipitation shows that NDR1 interacts with multiple signal components except p65 in NF‐κB signaling pathway. Furthermore, both phosphorylation and kinase dead mutants of NDR1 lose their synergistic effects on TNFα‐induced NF‐κB activation. siRNA oligo against NDR1 and kinase dead mutant as well mainly block the NF‐κB activation induced by TRAF2 but not RIP1. Furthermore, kinase dead mutant of NDR1 fails to interact with TRAF2. Taken together, our findings suggest an unknown function of NDR1, which may regulate NF‐κB activation by its kinase activity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Pseudomonas aeruginosa is a major cause of nosocomial infections and contributes to higher mortality in hospitalized individuals. Infection by P. aeruginosa triggers host immune response through activation of pathogen recognition receptors, which are present in innate cells. Several studies have reported the mechanism of P. aeruginosa induced innate immunity in multiple cell types. But so far there is no reports on response of megakaryocytes to P. aeruginosa infection. Hence, our aim was to investigate the precise role and signaling mechanism of megakaryocytes during P. aeruginosa infection. In this study, we used Mo7e cells as representatives of human megakaryocyte and found that P. aeruginosa infection induces cytotoxicity in these cells. We further demonstrated that P. aeruginosa infection modulates p38 and extracellular signal regulated kinase pathways in Mo7e cells. Protein expression profiling in P. aeruginosa lipopolysaccharide‐treated Mo7e cells revealed upregulation of importin subunit β and downregulation of metabolic enzymes. Our results suggest that P. aeruginosa infection regulates mitogen‐activated protein kinases signaling pathway and importin in Mo7e cells and that this is a potential mechanism for nuclear translocation of nuclear factor binding near the κ light‐chain gene in B cells and c‐Jun N‐terminal kinases to induce cell cytotoxicity.  相似文献   

16.
17.
18.
Hedgehog (Hh) pathway signaling is crucial for the maintenance of blood cell progenitors in the lymph gland hematopoietic organ present in Drosophila third instar larvae. Previous studies from our lab have likewise shown the importance of the mir‐7 and bag of marbles (bam) genes in maintaining the progenitor state. Thus, we sought to investigate a possible interaction between the Hh pathway and mir‐7/bam in the prohemocyte population within this hematopoietic tissue. Gain of function mir‐7 was able to rescue a blood cell progenitor depletion phenotype caused by Patched (Ptc) inhibition of Hh pathway signaling in these cells. Similarly, expression of a dominant/negative version of Ptc was able to rescue the severe reduction of prohemocytes due to bam loss of function. Furthermore, we demonstrated that Suppressor of fused [Su(fu)], another known inhibitor of Hh signaling, likely serves as a translational repression target of the mir‐7 miRNA. Our results suggest the mir‐7/bam combination regulates the Hh signaling network through repression of Su(fu) to maintain hemocyte progenitors in the larval lymph gland.  相似文献   

19.
Growth is a complex trait that adapts to the prevailing conditions by integrating many internal and external signals. Understanding the molecular origin of this variation remains a challenging issue. In this study, natural variation of shoot growth under mannitol‐induced stress was analyzed by standard quantitative trait locus mapping methods in a recombinant inbred line population derived from a cross between the Col‐0 and Cvi‐0 Arabidopsis thaliana accessions. Cloning of a major QTL specific to mannitol‐induced stress condition led to identification of EGM1 and EGM2, a pair of tandem‐duplicated genes encoding receptor‐like kinases that are potentially involved in signaling of mannitol‐associated stress responses. Using various genetic approaches, we identified two non‐synonymous mutations in the EGM2[Cvi] allele that are shared by at least ten accessions from various origins and are probably responsible for a specific tolerance to mannitol. We have shown that the enhanced shoot growth phenotype contributed by the Cvi allele is not linked to generic osmotic properties but instead to a specific chemical property of mannitol itself. This result raises the question of the function of such a gene in A. thaliana, a species that does not synthesize mannitol. Our findings suggest that the receptor‐like kinases encoded by EGM genes may be activated by mannitol produced by pathogens such as fungi, and may contribute to plant defense responses whenever mannitol is present.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号