首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Longer, meaning more vigorous, shoots of a wild grape clone (Vitis arizonica) were more susceptible to attack by second and third generations of leaf-galling grape phylloxera,Daktulopsphaira vitifoliae, as the growing season progressed. Although there was no significant difference in mean shoot length between attacked and unattacked shoots within a clone at the beginning of shoot elongation, attacked shoots were significantly longer than unattacked shoots when elongation had ceased (P<0.01). Also, long attacked shoots had a significantly greater population of phylloxera galls than short attacked shoots (P<0.01) as the season progressed. The phylloxera population on long shoots increased rapidly while the population on short shoots remained the same. Longer shoots also produced significantly more axillary shoots than shorter shoots as the season progressed (P<0.001), and the number of axillary shoots accounted for 66 percent of the variance in number of attacked leaves on a shoot. Experimental evidence showed that there was a significantly greater percentage of available leaves attacked on long shoots than on short shoots (P<0.05) and the leaves on long shoots generally had a greater number of galls per leaf. The relationship between shoot length and probability of attack was also tested by comparing shoots lengths of 10 attacked clones and 10 unattacked clones at a second location. Mean shoot lengths of attacked clones were significantly longer than mean shoot lengths of unattacked clones (P<0.05), and mean shoot lengths of attacked shoots within a clone were significantly longer than unattacked shoots (P<0.001). Longer shoot length accounted for 81 percent of the variance in probability of attack. The reason for this pattern of attack was that long shoots produced newly expanding leaves over a longer time during the growing season and multivoltine phylloxera require undifferentiated tissue to initiate gall formation. Patterns of attack within a shoot were characterized by an uneven distribution of galls among leaves. This was due to development time between generations and the current availability of undifferentiated tissue at times of colonization. This study supports the hypothesis that some herbivore species are favored more by vigorous plants than by stressed plants.  相似文献   

2.
Plants from four populations of Hordeum spontaneum originating in distinct environments of Israel were compared for stress induced phenotypic plasticity. The environments ranged along a gradient of increasing rainfall amount and predictability from low (desert) to moderate (semisteppe batha) to high (Mediterranean grassland and mountain, the latter also experiencing frost stress). The plants were exposed to a set of four treatments: no stress (optimum water and nutrients), water, nutrient and both water and nutrient stress. Plants from the four populations (or ecotypes) exhibited different patterns of plasticity in response to the different stresses (water and nutrients) and in different trait categories (reproductive, fitness and resource allocation). The importance of plasticity in response to water stress appears to decrease, and to nutrient stress appears to increase along the increasing rainfall gradient. The mountain ecotype, growing in an area with high potential productivity (amount of rainfall) but experiencing periodic frosts, was the most plastic among ecotypes in resource allocation under both water and nutrient stress, but exhibited low plasticity in other trait categories. In contrast, the desert ecotype had low plasticity in resource allocation under water stress and the lowest plasticity among the four ecotypes in all trait categories in response to nutrient stress. The ecotype originating in Mediterranean grassland, a predictable and most favourable environment, was highly plastic in fitness and allocation traits in response to low nutrient levels which is likely to occur due to competition in productive environment. We discuss the observed differences in ecotype plasticity as part of their environmentally induced adaptive ‘strategies’. We found no support for the hypothesis that plants originating in environments with greater variation and unpredictability are more plastic. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society 2002, 75 , 301–312.  相似文献   

3.
Reciprocal introduction of seeds and seedlings of wild barley, Hordeum spontaneum , originating in four different environments of Israel was used to: (1) test for local adaptation, (2) make inferences about environmental effects on life‐history and reproductive traits, and (3) identify trait combinations with recognizable ‘strategies’. The four populations examined represented the following environments: (1) desert ? low productivity and predictability, drought stress; (2) semi‐steppe batha ? moderate productivity and predictability; (3) grassland ? high productivity and predictability; and (4) mountain ? high productivity and predictability but with severe frost stress. Significant genotype‐by‐environment interactions were observed for yield and reproductive biomass, seedling biomass and percentage germinated and survived seeds, suggesting local ecotype adaptation. Increasing productivity and predictability of environment in respect to rainfall, without concomitant frost stress, was found to select for high reproductive biomass and large seeds, a high fraction of germinating seeds and high vigour of seedlings. The optimal strategy changes with increasing productivity and predictability and involves a trade‐off between seed size and number, with reduced yield but increased seed mass, consistent with competition selection (or K‐selection sensu MacArthur & Wilson (1967 )) type. No specific life‐history adaptations to predictable frost stress were detected for the mountain ecotype, but there was higher survival of seedlings in their indigenous (mountain) environment compared with other ecotypes. The latter appears to be a physiological adaptation to frost, which is consistent with selection for stress tolerance (or S‐selection sensu Grime (1977 )) type. The other stress factor, drought, which is very unpredictable in deserts, was associated with high seed dormancy, small seed size and low vigour of seedlings, but relatively high yield, which is consistent with a stress‐escape bet‐hedging strategy. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77 , 479–490.  相似文献   

4.
The use of local, native plant materials is now common in restoration but testing for polyploidy in seed sources is not. Diversity in cytotypes across a landscape can pose special seed transfer challenges, because the methods used to determine genetically appropriate materials for seed transfer do not account for cytotypic variation. This lack of consideration may result in mixing cytotypes through revegetation, which could reduce long‐term population viability. We surveyed nine populations of a native bunchgrass, Pseudoroegneria spicata, in three EPA Level III Ecoregions in the western United States to determine the frequency of polyploidy, whether there are differences in traits (phenotype, fecundity, and mortality) among plants of different cytotypes, and whether cytotype frequency varies among ecoregions. We assessed trait variation over 2 years in a common garden and determined ploidy using flow cytometry. Polyploidy and mixed cytotype populations were common, and polyploids occurred in all ecoregions. Four of the nine populations were diploid. The other five had tetraploids present: three had only tetraploid individuals whereas two had mixed diploid/tetraploid cytotypes. There was significant variation in traits among cytotypes: plants from tetraploid populations were larger than diploid or mixed populations. The frequency and distribution of cytotypes make it likely that seed transfer in the study area will inadvertently mix diploid and polyploid cytotypes in this species. The increasing availability of flow cytometry may allow ploidy to be incorporated into native plant materials sourcing and seed transfer.  相似文献   

5.
Breeding of competitive cultivars has long been fraught with difficulty owing to limited knowledge of the genetic basis of competitive ability. In this study, we examined the diversity of competitive ability in Asian rice and the genetic basis of this variation. Cultivated strains and wild perennial strains have higher competitive ability than wild annual strains. Quantitative trait locus (QTL) analysis of competitive ability for three weed species was conducted in the cross between cultivated and wild annual strains, and three QTLs for general competitive ability (GCA) were identified. GCA-QTLs conferred higher competitive ability by the cultivated rice alleles and were co-located with QTLs for plant architecture and root growth, detected in the same mapping population. Furthermore, a significant change in GCA was achieved by accumulation and epistatic interaction of three QTLs. Further studies on the genetic control of competitive ability would facilitate the breeding of competitive cultivars in rice.  相似文献   

6.
Cultivars are selected for advantageous traits, which may enable them to have a greater competitive effect (CE), particularly under high nutrient conditions. Sites with high nutrient availability may favor the development of dominant grasses rather than subordinate species, especially in nutrient‐limited systems, such as calcareous grasslands. The aim of this experiment was to determine whether seed source influences the CE of a dominant grass on a subordinate species, and whether this relationship is mediated by nutrient availability. A greenhouse experiment with three nutrient levels was established; Dianthus carthusianorum was chosen as the subordinate “phytometer” to detect variation in the CE of different Festuca rubra seed sources. The grass species was sourced from 13 cultivar and 12 commercially propagated, but not selected, wild sources. When CE was calculated from biomass, propagated wild seed sources of F. rubra had a greater CE on the subordinate species than cultivars for medium and high nutrient levels. Based on phytometer height, propagated wild seed sources of F. rubra had a greater CE under all three nutrient levels. Our findings do not support the general notion that cultivars are more competitive than wild genotypes. Thus, the cultivar F. rubra may facilitate the establishment of other species during grassland restoration, particularly under elevated nutrient conditions.  相似文献   

7.
Plant studies that have investigated the fitness consequences of growing with siblings have found conflicting evidence that can support different theoretical frameworks. Depending on whether siblings or strangers have higher fitness in competition, kin selection, niche partitioning and competitive ability have been invoked. Here, we bring together these processes in a conceptual synthesis and argue that they can be co-occurring. We propose that these processes can be reconciled and argue for a trait-based approach of measuring natural selection instead of the fitness-based approach to the study of sibling competition. This review will improve the understanding of how plants interact socially under competitive situations, and provide a framework for future studies.  相似文献   

8.
To examine if the cultivation process has reduced the genetic variation of modern cultivars of the traditional Chinese medicinal plant, Coptis chinensis, the levels and distribution of genetic variation was investigated using ISSR markers. A total of 214 C. chinensis individuals from seven wild and three cultivated populations were included in the study. Seven ISSR primers were used and a total of 91 DNA fragments were scored. The levels of genetic diversity in cultivated populations were similar as those in wild populations (mean PPL = 65.2% versus PPL = 52.4%, mean H = 0.159 versus H = 0.153 and mean I = 0.255 versus I = 0.237), suggesting that cultivation did not seriously influence genetic variation of present-day cultivated populations. Neighbour-joining cluster analysis showed that wild populations and cultivated populations were not separated into two groups. The coefficient of genetic differentiation between a cultivar and its wild progenitor was 0.066 (G(st)), which was in good accordance with the result by amova analysis (10.9% of total genetic variation resided on the two groups), indicating that cultivated populations were not genetically differentiated from wild progenitors. For the seven wild populations, a significant genetic differentiation among populations was found using amova analysis (45.9% of total genetic variation resided among populations). A number of causes, including genetic drift and inbreeding in the small and isolated wild populations, the relative limited gene flow between wild populations (N(m) = 0.590), and high gene flow between cultivars and their wild progenitors (N(m) = 7.116), might have led to the observed genetic profiles of C. chinensis.  相似文献   

9.
Although most studies on the evolution of mimicry and warningcoloration in insects have considered predators as the majorselective force, it is possible that competition for food resourcescould also facilitate selection for these conspicuous signals.For example, when warningly colored social wasps visit flowers,then they frequently behave aggressively toward heterospecifics,and they also attack and feed on other flying insects. Underthese conditions, a resemblance to a wasp might provide a mimetichoverfly with improved access to floral resources by reducingthe frequency with which it is disturbed by other pollinators.We experimentally evaluated whether wasp-like colors and patternswere important in preventing other flower visitors from sharingthe same flower resource, using pairwise presentations of bothnatural and artificial prey in the field. Flower visitors weremore likely to visit unoccupied flowers compared with the flowerspinned with either natural or artificial specimens in 2 plantspecies with different inflorescences. However, flower visitorsdid not show a significantly reduced rate of visitation to flowerspinned with specimens bearing wasp-like colors and patternscompared with the flowers occupied by similar-sized specimensthat were nonmimetic. Overall, we found no compelling evidencein this study to support the contention that wasp-like warningsignals of hoverflies prevent other flower visitors from sharingflower resources, although insects showed a greater tendencyto avoid visiting flowers pinned with a wasp compared with flowerspinned with a nonmimetic fly.  相似文献   

10.
Testing the enemy release hypothesis: a review and meta-analysis   总被引:1,自引:0,他引:1  
One of the most cited hypotheses explaining the inordinate success of a small proportion of introduced plants that become pests is the ‘natural enemies hypothesis’. This states that invasive introduced plants spread rapidly because they are liberated from their co-evolved natural enemies. This hypothesis had not been properly tested until recently. Previous reviews on this topic have been narrative and vote counting in nature. In this review, we carried out quantitative synthesis and meta-analysis using existing literature on plants and their herbivores to test the different components of the enemy release hypothesis. We found supporting evidence in that (1) insect herbivore fauna richness is significantly greater in the native than introduced ranges, and the reduction is skewed disproportionally towards specialists and insects feeding on reproductive parts; and (2) herbivore damage levels are greater on native plants than on introduced invasive congeners. However, herbivore damage levels are only marginally greater for plants in native than in introduced ranges, probably due to the small numbers of this type of study. Studies quantifying herbivore impacts on plant population dynamics are too scarce to make conclusions for either comparison of plants in native vs introduced ranges or of co-occurring native and introduced congeners. For future research, we advocate that more than two-way comparisons between plants in native and introduced ranges, or native and introduced congeners are needed. In addition, the use of herbivore exclusions to quantify the impacts of herbivory on complete sets of population vital rates of native vs introduced species are highly desirable. Furthermore, three-way comparisons among congeners of native plants, introduced invasive, and introduced non-invasive plants can also shed light on the importance of enemy release. Finally, simultaneously testing the enemy release hypothesis and other competing hypotheses will provide significant insights into the mechanisms governing the undesirable success of invasive species.  相似文献   

11.
An underlying assumption in many models of coexistence and species response to fragmentation is the trade-off between dispersal and competitive abilities among species. Despite a well-founded theoretical ground for this assumption, the mechanism itself has not been as thoroughly explored. Empirical studies of the dispersal/competition trade-off have so far mainly concerned the dispersal distance of single offspring, whereas most models where the trade-off is assumed concern dispersal rate, i.e. the number of offspring that is dispersed outside a local patch per time unit. When species differ in fecundity this should also affect the dispersal rate. We therefore investigated different aspects of dispersal ability and competitive ability in the recruitment phase for 15 wind-dispersed Asteraceae species. A trade-off was found between dispersal ability at the offspring level, i.e. distance travelled by single seeds, and competitive ability in the recruitment phase, but no trade-off was found between dispersal ability at the brood level, i.e. the dispersal ability of single seeds in combination with fecundity, and competitive ability in the recruitment phase. The results were supported both by cross-species analysis and analyses by phylogenetically independent contrast. If this is a general pattern then it is troublesome for models making the assumption that there is a trade-off between dispersal rate and competitive ability.  相似文献   

12.
Recovery of an imperiled plant species may require augmentation of existing populations or creation of new ones. Hundreds of such projects have been conducted over the last few decades, but there is a bias in the literature favoring successes over failures. In this paper, we evaluate a series of introductions that experimentally manipulated microhabitat and fire in an adaptive introduction framework. Between 2002 and 2012, we (and our collaborators) carried out ten introductions and augmentations of Florida ziziphus Pseudoziziphus (Condalia, Ziziphus) celata, a clonal shrub limited to very small populations and narrowly endemic to pyrogenic central Florida sandhills. Six of the introductions were designed as experiments to test hypotheses about how demographic performance was affected by microhabitat, fire, and propagule type. Introduced transplants had high survival (<90% annually), inconsistent growth, and little transition to reproduction, while introduced seeds had low germination and survival. Transplants were more efficient than seeds as translocation propagules. Shaded (vs. open) sites supported generally higher transplant and seedling survival and seed germination percentages, but growth responses varied among experiments. Supplemental irrigation increased transplant survival and seed germination, but otherwise seedling and plant survival and growth were not significantly affected. Contrary to expectations based on wild populations, introduced propagules have not been more successful in unshaded sites, suggesting that Florida ziziphus has broader microhabitat preferences than hypothesized. Compared to wild plants, introduced plants had similar survival and responses to fire, slower growth, and more delayed flowering. Introduced plants had no clonal spread. While no introduced population has demonstrated a capacity for long-term viability, one augmented population has flowered and produced viable fruits. Given that Florida ziziphus genets are long-lived, low levels of sexual reproduction may be adequate for the establishment of viable populations. Thus, after many translocations over more than a decade, it is premature to characterize any single translocation as a success or a failure, underscoring the need for a long view of translocation success.  相似文献   

13.
Abstract The aim of this paper is to evaluate (i) the relevance of currently proposed measures of competitive intensity to elevated CO2 studies by means of an example analysis, hypothesizing that competitive intensity is increased under elevated CO2; and (ii) an alternative method for predicting species performance in mixtures from monocultures. Relative competition intensity (RCI), relative physiological performance and normalized ecological performance were used to characterize the competitive ability of two grasses (Danthonia richardsonii Cashmore, Phalaris aquatica L.) and two legumes (Lotus pedunculatus Cav., Trifolium repens L.) grown in monocultures and mixtures of the four species along a N gradient under conditions of ambient and elevated CO2. Relative competition intensity could not be used to predict competitive outcomes in mixtures under conditions of elevated CO2 because it failed to account for changes in the size of interspecific differences along the N gradient and between CO2 concentrations. Relative physiological performance and relative ecological performance were more useful for investigating biomass production in mixtures and to predict species performance in mixtures from their performance in monocultures. Both indices of relative performance showed an increase in competitive intensity under elevated CO2 conditions. They also showed a decrease in competitive intensity with increasing N supply over most of the range of N supply, but a reversal of that trend at high levels of N supply. The merits and utility of these relative performance indices for elevated CO2 are discussed.  相似文献   

14.
15.
Synergistic epistasis for fitness is often assumed in models of how selection acts on the frequency and distribution of deleterious mutations. Evidence for synergistic epistasis would exist if the logarithm of fitness declines more quickly with number of deleterious mutations, than predicted by a linear decline. This can be studied indirectly by quantifying the effect of different levels of inbreeding on fitness. Here, six sets (different genetic backgrounds) of three increasingly inbred Daphnia magna clones were used to assess their relative fitness according to changes in frequency in a competition experiment against a tester clone. A novelty of the mating procedure was that the inbreeding coefficients (F) of the three clones belonging to each set increased in steps of 0.25 independent of the (unknown) inbreeding coefficient of the common ancestor. The equal increase of the inbreeding coefficients is important, because deviations influence the quantification of inbreeding depression, its variance and the detection of epistasis. In a simple mathematical model we show that when working with a partially inbred population inbreeding depression is underestimated, the variance of fitness is increased, and the detection of epistasis more difficult. Further, to examine whether an interaction between inbreeding and parasitism exists, each inbred clone was tested with and without a microsporidium infection (Octosporea bayeri). We found a nonlinear decrease of the logarithm of fitness across the three levels of inbreeding, indicating synergistic epistasis. The interaction term between parasitism and inbreeding was not significant. Our results suggest that deleterious mutations may be purged effectively once the level of inbreeding is high, but that parasitism seems not to influence this effect.  相似文献   

16.
《Plant Ecology & Diversity》2013,6(3-4):343-353
Background: Studies in temperate mountains suggest that plant–plant interactions modulate tree establishment above the forest line. In tropical mountains worldwide this issue remains largely unexplored.

Aims: To analyse the population structure and local spatial relationships of a dominant tree at a species-rich tropical Andean forest line.

Methods: We determined changes in the population structure of Diplostephium venezuelense along an elevation gradient between continuous forest and open páramo and analysed plant community structure and superficial rock cover in the neighbourhood of saplings and adults at the upper forest line.

Results: Sapling and adult densities were highest in low-altitude páramos adjacent to the forest line and at the borders of small forest islands. Saplings showed local spatial aggregation, were positively associated with small boulders and low shrubs, and negatively associated with mosses and lichens. However, no spatial association was found between scattered adults in the páramo and saplings of other forest trees.

Conclusions: Complex species-specific local spatial interactions, suggesting both facilitative and antagonistic effects, seem to modulate the establishment of the dominant tree D. venezuelense at and above the upper forest line. Nevertheless, the establishment of other tree species above continuous forests does not appear to be facilitated by the canopy cover offered by the isolated D. venezuelense individuals established in open páramo environments.  相似文献   

17.
Restoration of species‐rich grasslands is a key issue of conservation. The transfer of seed‐containing local plant material is a proven technique to restore species‐rich grassland, since it potentially allows to establish genetically variable and locally adapted populations. In our study, we tested how the transfer of local plant material affected the species diversity and composition of restored grasslands and the genetic variation of the typical grassland plant species Knautia arvensis and Plantago lanceolata.For our study, we selected fifteen study sites in southeastern Germany. We analyzed species diversity and composition and used molecular markers to investigate genetic variation within and among populations of the study species from grasslands that served as source sites for restoration and grasslands, which were restored by transfer of green hay and threshed local plant material.The results revealed no significant differences in species diversity and composition between grasslands at source and restoration sites. Levels of genetic variation within populations of the study species Knautia arvensis and Plantago lanceolata were comparable at source and restoration sites and genetic variation among populations at source and their corresponding restoration sites were only marginal different.Our study suggests that the transfer of local plant material is a restoration approach highly suited to preserve the composition of species‐rich grasslands and the natural genetic pattern of typical grassland plant species.  相似文献   

18.
Studies of sex allocation have provided some of the most successfultests of theory in behavioral and evolutionary ecology. Forinstance, local mate competition (LMC) theory has explainedvariation in sex allocation across numerous species. However,some patterns of sex ratio variation remain unexplained by existingtheory. Most existing models have ignored variation in malecompetitive ability and assumed all males have equal opportunitiesto mate within a patch. However, in some species experiencingLMC, males often fight fiercely for mates, such that male matingsuccess varies with male fighting ability. Here, we examinethe effect of competitive ability on optimal sex allocationschedules using a dynamic programming approach. This model assumesan asymmetric competitive ability derived from different mortalitiesaccording to the timing of male emergence. If the mortalityof newly emerging males is larger than that of already emergedmales, our model predicts a more female-biased sex ratio thanexpected under traditional LMC models. In addition, femalesare predicted to produce new males constantly at a low rateover the offspring emergence period. We show that our modelsuccessfully predicts the sex ratios produced by females ofthe parasitoid wasp Melittobia, a genus renowned for its vigorouslyfighting males and lower than expected sex ratios.  相似文献   

19.
郑颖  温仲明  宋光  丁曼 《生态学报》2015,35(17):5834-5845
不同退耕年限退耕地的环境差异以及不同生物间的相互作用导致各阶段植物功能型物种数量不同。研究退耕地植被自然恢复过程中不同植物功能型适应策略及功能型物种数量随退耕年限的变化,对于理解植物对环境的响应机制及植物的适应策略具有重要意义。采用空间序列代替时间序列的方法,以延河流域森林草原区不同退耕年限、自然恢复的植物群落为研究对象,调查了不同退耕年限的植物群落33个,共44种植物,涉及16个科35个属,分别测定了每个物种的叶厚度、比叶面积、叶组织密度、叶片氮含量、比根长、根组织密度、细根氮含量等7项能够反映植物生存对策且易于测量的功能性状。依据这7项植物功能性状,采用数量分类方法将全部物种划分为3个功能型。结果表明:(1)根据C-S-R理论,功能型Ⅰ植物用于防御的投资较多,生长速率处于中间水平,偏向于"胁迫-干扰型",功能型Ⅱ植物能够通过维持体内的养分平衡的方式对抗资源贫瘠或干旱的环境,偏向于"胁迫-竞争型"对策,而功能型Ⅲ植物吸收大量的营养和资源用于生长,偏向于"竞争型";(2)功能型Ⅰ在整个植被恢复时间序列中占据优势地位(61%—80%),并呈增加趋势,功能型Ⅱ则由恢复初期的25%降低为恢复后期的15%,功能型Ⅲ从恢复初期的14%降低到恢复后期的5%。同时,在功能型Ⅰ内部,优势物种也发生着相应的相互替代。虽然土壤养分含量整体上随着植被自然恢复时间的延长而呈上升趋势,但是植物的生存环境并未改善到不存在干扰与胁迫的程度。因此,在植被恢复初期的四、五十年内,"胁迫-干扰型"策略的植物占据着绝对优势。随着植被恢复时间的延长,能够高效利用资源且抗胁迫能力强的物种代替了以快速生长和传播为适应策略的物种。  相似文献   

20.
In a subdivided population with recurrent local extinction and re-colonisation, competition amongst related pollen or sperm to fertilise ovules or eggs (‘local mate competition’) is expected to select for female-biased sex allocation. Population turnover should also select against unisexuality in favour of self-fertile cosexuality, because males and females are unable to establish new populations on their own (‘Baker's Law’). Here I argue that androdioecy, a rare breeding system in which males co-occur with hermaphrodites, may evolve in a metapopulation under the joint action of local mate competition and Baker's Law if rates of self-fertilisation decrease with increasing population size. The hypothesis makes several predictions regarding patterns of life-history and sex allocation that are borne out by recent observations of androdioecious species in several unrelated lineages of plants and animals. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号