首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chimonanthus salicifolius, a member of the Calycanthaceae of magnoliids, is one of the most famous medicinal plants in Eastern China. Here, we report a chromosome‐level genome assembly of Csalicifolius, comprising 820.1 Mb of genomic sequence with a contig N50 of 2.3 Mb and containing 36 651 annotated protein‐coding genes. Phylogenetic analyses revealed that magnoliids were sister to the eudicots. Two rounds of ancient whole‐genome duplication were inferred in the Csalicifolious genome. One is shared by Calycanthaceae after its divergence with Lauraceae, and the other is in the ancestry of Magnoliales and Laurales. Notably, long genes with > 20 kb in length were much more prevalent in the magnoliid genomes compared with other angiosperms, which could be caused by the length expansion of introns inserted by transposon elements. Homologous genes within the flavonoid pathway for Csalicifolius were identified, and correlation of the gene expression and the contents of flavonoid metabolites revealed potential critical genes involved in flavonoids biosynthesis. This study not only provides an additional whole‐genome sequence from the magnoliids, but also opens the door to functional genomic research and molecular breeding of Csalicifolius.  相似文献   

2.
3.
4.
Apolygus lucorum (Miridae) is an omnivorous pest that occurs worldwide and is notorious for the serious damage it causes to various crops and substantial economic losses. Although some studies have examined the biological characteristics of the mirid bug, no reference genome is available in Miridae, limiting in‐depth studies of this pest. Here, we present a chromosome‐scale reference genome of A. lucorum, the first sequenced Miridae species. The assembled genome size was 1.02 Gb with a contig N50 of 785 kb. With Hi‐C scaffolding, 1,016 Mb contig sequences were clustered, ordered and assembled into 17 large scaffolds with scaffold N50 length 68 Mb, each corresponding to a natural chromosome. Numerous transposable elements occur in this genome and contribute to the large genome size. Expansions of genes associated with omnivorousness and mesophyll feeding such as those related to digestion, chemosensory perception, and detoxification were observed in A. lucorum, suggesting that gene expansion contributed to its strong environmental adaptability and severe harm to crops. We clarified that a salivary enzyme polygalacturonase is unique in mirid bugs and has significantly expanded in A. lucorum, which may contribute to leaf damage from this pest. The reference genome of A. lucorum not only facilitates biological studies of Hemiptera as well as an understanding of the damage mechanism of mesophyll feeding, but also provides a basis on which to develop efficient control technologies for mirid bugs.  相似文献   

5.
Fungi are ideal model organisms for dissecting the genomic bases of adaptive divergence in eukaryotes. They have simple morphologies and small genomes, occupy contrasting, well‐identified ecological niches and tend to have short generation times, and many are amenable to experimental approaches. Fungi also display diverse lifestyles, from saprotrophs to pathogens or mutualists, and they play extremely important roles in both ecosystems and human activities, as wood decayers, mycorrhizal fungi, lichens, endophytes, plant and animal pathogens, and in fermentation or drug production. We review here recent insights into the patterns and mechanisms of adaptive divergence in fungi, including sources of divergence, genomic variation and, ultimately, speciation. We outline the various ecological sources of divergent selection and genomic changes, showing that gene loss and changes in gene expression and in genomic architecture are important adaptation processes, in addition to the more widely recognized processes of amino acid substitution and gene duplication. We also review recent findings regarding the interspecific acquisition of genomic variation and suggesting an important role for introgression, hybridization and horizontal gene transfers (HGTs). We show that transposable elements can mediate several of these genomic changes, thus constituting important factors for adaptation. Finally, we review the consequences of divergent selection in terms of speciation, arguing that genetic incompatibilities may not be as widespread as generally thought and that pleiotropy between adaptation and reproductive isolation is an important route of speciation in fungal pathogens.  相似文献   

6.
7.
Casuarina equisetifolia (C. equisetifolia), a conifer‐like angiosperm with resistance to typhoon and stress tolerance, is mainly cultivated in the coastal areas of Australasia. C. equisetifolia, making it a valuable model to study secondary growth associated genes and stress‐tolerance traits. However, the genome sequence is unavailable and therefore wood‐associated growth rate and stress resistance at the molecular level is largely unexplored. We therefore constructed a high‐quality draft genome sequence of C. equisetifolia by a combination of Illumina second‐generation sequencing reads and Pacific Biosciences single‐molecule real‐time (SMRT) long reads to advance the investigation of this species. Here, we report the genome assembly, which contains approximately 300 megabases (Mb) and scaffold size of N50 is 1.06 Mb. Additionally, gene annotation, assisted by a combination of prediction and RNA‐seq data, generated 29 827 annotated protein‐coding genes and 1983 non‐coding genes, respectively. Furthermore, we found that the total number of repetitive sequences account for one‐third of the genome assembly. Here we also construct the genome‐wide map of DNA modification, such as two novel forms N6‐adenine (6mA) and N4‐methylcytosine (4mC) at the level of single‐nucleotide resolution using single‐molecule real‐time (SMRT) sequencing. Interestingly, we found that 17% of 6mA modification genes and 15% of 4mC modification genes also included alternative splicing events. Finally, we investigated cellulose, hemicellulose, and lignin‐related genes, which were associated with secondary growth and contained different DNA modifications. The high‐quality genome sequence and annotation of C. equisetifolia in this study provide a valuable resource to strengthen our understanding of the diverse traits of trees.  相似文献   

8.
9.
Populus euphratica is well adapted to extreme desert environments and is an important model species for elucidating the mechanisms of abiotic stress resistance in trees. The current assembly of P. euphratica genome is highly fragmented with many gaps and errors, thereby impeding downstream applications. Here, we report an improved chromosome‐level reference genome of P. euphratica (v2.0) using single‐molecule sequencing and chromosome conformation capture (Hi‐C) technologies. Relative to the previous reference genome, our assembly represents a nearly 60‐fold improvement in contiguity, with a scaffold N50 size of 28.59 Mb. Using this genome, we have found that extensive expansion of Gypsy elements in P. euphratica led to its rapid increase in genome size compared to any other Salicaceae species studied to date, and potentially contributed to adaptive divergence driven by insertions near genes involved in stress tolerance. We also detected a wide range of unique structural rearrangements in P. euphratica, including 2,549 translocations, 454 inversions, 121 tandem and 14 segmental duplications. Several key genes likely to be involved in tolerance to abiotic stress were identified within these regions. This high‐quality genome represents a valuable resource for poplar breeding and genetic improvement in the future, as well as comparative genomic analysis with other Salicaceae species.  相似文献   

10.
The complete chloroplast genome of Gracilariopsis lemaneiformis was recovered from a Next Generation Sequencing data set. Without quadripartite structure, this chloroplast genome (183,013 bp, 27.40% GC content) contains 202 protein‐coding genes, 34 tRNA genes, 3 rRNA genes, and 1 tmRNA gene. Synteny analysis showed plasmid incorporation regions in chloroplast genomes of three species of family Gracilariaceae and in Grateloupia taiwanensis of family Halymeniaceae. Combined with reported red algal plasmid sequences in nuclear and mitochondrial genomes, we postulated that red algal plasmids may have played an important role in ancient horizontal gene transfer among nuclear, chloroplast, and mitochondrial genomes. Substitution rate analysis showed that purifying selective forces maintaining stability of protein‐coding genes of nine red algal chloroplast genomes over long periods must be strong and that the forces acting on gene groups and single genes of nine red algal chloroplast genomes were similar and consistent. The divergence of Gp. lemaneiformis occurred ~447.98 million years ago (Mya), close to the divergence time of genus Pyropia and Porphyra (443.62 Mya).  相似文献   

11.
A rapid and efficient method for the large-scale propagation of a highly valuable medicinal plant, Andrographis paniculata Nees, through in vitro culture of nodal explants obtained from 15-d-old aseptic seedling has been developed. High frequency direct shoot proliferation was induced in nodal explants cultured on Murashige and Skoog’s medium supplemented with 6-benzylaminopurine (BAP). Amongst the various cytokinins tested (BAP, kinetin, thidiazuron and 2-isopentyl adenine), BAP proved to be the most effective. The shoot forming capacity of the nodal explants was influenced by the BAP concentration (1–12.5 μM), and the optimal response was observed at 10 μM BAP, which induced an average of 34 shoots in 94% of the cultures within 4 wk. Significant differences were recorded in terms of average number of shoots per explant (8.6–34.1) among the different concentrations of BAP investigated. Concentrations of all cytokinins tested reach a level that can be considered above the optimum level, as marked by a reduced frequency of shoot proliferation. The multiple shoots obtained on various concentrations of BAP failed to elongate even after transfer to hormone-free MS medium. Elongation of the induced shoots was achieved on MS basal medium supplemented with 1.0 μM GA3 within 2 wk. A proliferating shoot culture was established by repeatedly subculturing the original nodal explants on shoot multiplication medium after each harvest of the newly formed shoots. The explants retained their morphogenic potential even after three harvests. Therefore, in 90 d, about 60–70 shoots were obtained from a single nodal explant and the nodal explants from primary shoots further regenerated equivalent number of shoots, depicting their high frequency regeneration potential in A. paniculata. Rooting was best induced in 94% of shoots cultured on MS medium supplemented with 2.5 μM indole-3-butyric acid (IBA), within a wk. The plantlets were successfully transferred to soil after hardening with a 92% survival rate. The system is rapid: the initiation of shoot buds to the transplanting of regenerants to soil is completed in 8–9 wk.  相似文献   

12.
Lonicera macranthoides (LM) and L. japonica (LJ) are medicinal plants widely used in treating viral diseases, such as COVID-19. Although the two species are morphologically similar, their secondary metabolite profiles are significantly different. Here, metabolomics analysis showed that LM contained ~86.01 mg/g hederagenin-based saponins, 2000-fold higher than LJ. To gain molecular insights into its secondary metabolite production, a chromosome-level genome of LM was constructed, comprising 9 pseudo-chromosomes with 40 097 protein-encoding genes. Genome evolution analysis showed that LM and LJ were diverged 1.30–2.27 million years ago (MYA). The two plant species experienced a common whole-genome duplication event that occurred ∼53.9–55.2 MYA before speciation. Genes involved in hederagenin-based saponin biosynthesis were arranged in clusters on the chromosomes of LM and they were more highly expressed in LM than in LJ. Among them, oleanolic acid synthase (OAS) and UDP-glycosyltransferase 73 (UGT73) families were much more highly expressed in LM than in LJ. Specifically, LmOAS1 was identified to effectively catalyse the C-28 oxidation of β-Amyrin to form oleanolic acid, the precursor of hederagenin-based saponin. LmUGT73P1 was identified to catalyse cauloside A to produce α-hederin. We further identified the key amino acid residues of LmOAS1 and LmUGT73P1 for their enzymatic activities. Additionally, comparing with collinear genes in LJ, LmOAS1 and LmUGT73P1 had an interesting phenomenon of ‘neighbourhood replication’ in LM genome. Collectively, the genomic resource and candidate genes reported here set the foundation to fully reveal the genome evolution of the Lonicera genus and hederagenin-based saponin biosynthetic pathway.  相似文献   

13.
14.
15.
Erigeron breviscapus is an important medicinal plant in Compositae and the first species to realize the whole process from the decoding of the draft genome sequence to scutellarin biosynthesis in yeast. However, the previous low‐quality genome assembly has hindered the optimization of candidate genes involved in scutellarin synthesis and the development of molecular‐assisted breeding based on the genome. Here, the E. breviscapus genome was updated using PacBio RSII sequencing data and Hi‐C data, and increased in size from 1.2 Gb to 1.43 Gb, with a scaffold N50 of 156.82 Mb and contig N50 of 140.95 kb, and a total of 43,514 protein‐coding genes were obtained and oriented onto nine pseudo‐chromosomes, thus becoming the third plant species assembled to chromosome level after sunflower and lettuce in Compositae. Fourteen genes with evidence for positive selection were identified and found to be related to leaf morphology, flowering and secondary metabolism. The number of genes in some gene families involved in flavonoid biosynthesis in E. breviscapus have been significantly expanded. In particular, additional candidate genes involved in scutellarin biosynthesis, such as flavonoid‐7‐O‐glucuronosyltransferase genes (F7GATs) were identified using updated genome. In addition, three candidate genes encoding indole‐3‐pyruvate monooxygenase YUCCA2 (YUC2), serine carboxypeptidase‐like 18 (SCPL18), and F‐box protein (FBP), respectively, were identified to be probably related to leaf development and flowering by resequencing 99 individuals. These results provided a substantial genetic basis for improving agronomic and quality traits of E. breviscapus, and provided a platform for improving other draft genome assemblies to chromosome‐level.  相似文献   

16.
Bottle gourd (Lagenaria siceraria) is an important vegetable crop as well as a rootstock for other cucurbit crops. In this study, we report a high‐quality 313.4‐Mb genome sequence of a bottle gourd inbred line, USVL1VR‐Ls, with a scaffold N50 of 8.7 Mb and the longest of 19.0 Mb. About 98.3% of the assembled scaffolds are anchored to the 11 pseudomolecules. Our comparative genomic analysis identifies chromosome‐level syntenic relationships between bottle gourd and other cucurbits, as well as lineage‐specific gene family expansions in bottle gourd. We reconstructed the genome of the most recent common ancestor of Cucurbitaceae, which revealed that the ancestral Cucurbitaceae karyotypes consisted of 12 protochromosomes with 18 534 protogenes. The 12 protochromosomes are largely retained in the modern melon genome, while have undergone different degrees of shuffling events in other investigated cucurbit genomes. The 11 bottle gourd chromosomes derive from the ancestral Cucurbitaceae karyotypes followed by 19 chromosomal fissions and 20 fusions. The bottle gourd genome sequence has facilitated the mapping of a dominant monogenic locus, Prs, conferring Papaya ring‐spot virus (PRSV) resistance in bottle gourd, to a 317.8‐kb region on chromosome 1. We have developed a cleaved amplified polymorphic sequence (CAPS) marker tightly linked to the Prs locus and demonstrated its potential application in marker‐assisted selection of PRSV resistance in bottle gourd. This study provides insights into the paleohistory of Cucurbitaceae genome evolution, and the high‐quality genome sequence of bottle gourd provides a useful resource for plant comparative genomics studies and cucurbit improvement.  相似文献   

17.
18.
19.
The medicinal plant Madagascar periwinkle, Catharanthus roseus (L.) G. Don, produces hundreds of biologically active monoterpene‐derived indole alkaloid (MIA) metabolites and is the sole source of the potent, expensive anti‐cancer compounds vinblastine and vincristine. Access to a genome sequence would enable insights into the biochemistry, control, and evolution of genes responsible for MIA biosynthesis. However, generation of a near‐complete, scaffolded genome is prohibitive to small research communities due to the expense, time, and expertise required. In this study, we generated a genome assembly for C. roseus that provides a near‐comprehensive representation of the genic space that revealed the genomic context of key points within the MIA biosynthetic pathway including physically clustered genes, tandem gene duplication, expression sub‐functionalization, and putative neo‐functionalization. The genome sequence also facilitated high resolution co‐expression analyses that revealed three distinct clusters of co‐expression within the components of the MIA pathway. Coordinated biosynthesis of precursors and intermediates throughout the pathway appear to be a feature of vinblastine/vincristine biosynthesis. The C. roseus genome also revealed localization of enzyme‐rich genic regions and transporters near known biosynthetic enzymes, highlighting how even a draft genome sequence can empower the study of high‐value specialized metabolites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号