首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
DNA replication is sensitive to damage in the template. To bypass lesions and complete replication, cells activate recombination‐mediated (error‐free) and translesion synthesis‐mediated (error‐prone) DNA damage tolerance pathways. Crucial for error‐free DNA damage tolerance is template switching, which depends on the formation and resolution of damage‐bypass intermediates consisting of sister chromatid junctions. Here we show that a chromatin architectural pathway involving the high mobility group box protein Hmo1 channels replication‐associated lesions into the error‐free DNA damage tolerance pathway mediated by Rad5 and PCNA polyubiquitylation, while preventing mutagenic bypass and toxic recombination. In the process of template switching, Hmo1 also promotes sister chromatid junction formation predominantly during replication. Its C‐terminal tail, implicated in chromatin bending, facilitates the formation of catenations/hemicatenations and mediates the roles of Hmo1 in DNA damage tolerance pathway choice and sister chromatid junction formation. Together, the results suggest that replication‐associated topological changes involving the molecular DNA bender, Hmo1, set the stage for dedicated repair reactions that limit errors during replication and impact on genome stability.  相似文献   

4.
The retinoblastoma tumor suppressor (RB) is functionally inactivated at high frequency in human cancers. Based on the role of RB as a negative regulator of cell cycle this event would be expected to contribute to deregulated proliferation. However, evidence suggests that loss of RB not only mediates aberrant proliferation, but compromises the fidelity of cell cycle transitions leading to a breakdown in genome integrity. This review is focused on the mechanisms underlying this facet of RB function and the contribution of this process to tumorigenesis.  相似文献   

5.
Davidson MB  Brown GW 《DNA Repair》2008,7(8):1221-1232
ELG1 (enhanced level of genome instability) encodes a Replication Factor C (RFC) homolog that is important for the maintenance of genome stability. Elg1 interacts with Rfc2-5, forming the third alternative RFC complex identified to date. We found that Elg1 plays a role in the suppression of spontaneous DNA damage in addition to its previously identified roles in the resistance to DNA damage. Using mutational analysis we examined the function of conserved and unique regions of Elg1 in these roles. We found that the Walker A motif in the conserved RFC region is dispensable for Elg1 function in vivo. The RFC region is important for association with chromatin although residues predicted to mediate interactions with DNA are dispensable for Elg1 function. The unique C-terminus of Elg1 mediates oligomerization with Rfc2-5, nuclear import, and chromatin association, and is critical for the function of Elg1. Finally, we demonstrated that the N-terminus of Elg1 contributes to the maintenance of genome stability, and that one function of this N-terminus is to promote the nuclear localization of Elg1. Together, these studies delineate the regions of Elg1 important for its function in damage resistance and in the suppression of spontaneous DNA damage.  相似文献   

6.
Studies revealed that Nijmegen Breakage Syndrome protein 1 (NBS1) plays an important role in maintaining genome stability, but the underlying mechanism is controversial and elusive. Our results using clinical samples showed that NBS1 was involved in ataxia-telangiectasia mutated (ATM)-dependent pathway. NBS1 deficiency severely affected the phosphorylation of ATM as well as its downstream targets. BrdU proliferation assay revealed a delay of NBS cells in inhibiting DNA synthesis after Doxorubicin (Dox) treatment. In addition, under higher concentrations of Dox, NBS cells exhibited a much lower level of apoptosis compared to their normal counterparts, indicating a resistance to Dox treatment. Accelerated telomere shortening was also observed in NBS fibroblasts, consistent with an early onset of cellular replicative senescence in vitro. This abnormality may be due to the shelterin protein telomeric binding factor 2 (TRF2) which was found to be upregulated in NBS fibroblasts. The dysregulation of telomere shortening rate and of TRF2 expression level leads to telomere fusions and cellular aneuploidy in NBS cells. Collectively, our results suggest a possible mechanism that NBS1 deficiency simultaneously affects ATM-dependent DNA damage signaling and TRF2-regulated telomere maintenance, which synergistically lead to genomic abnormalities.  相似文献   

7.
The Fanconi anemia (FA) pathway plays a central role in the repair of DNA interstrand crosslinks (ICLs) and regulates cellular responses to replication stress. Homologous recombination (HR), the error‐free pathway for double‐strand break (DSB) repair, is required during physiological cell cycle progression for the repair of replication‐associated DNA damage and protection of stalled replication forks. Substantial crosstalk between the two pathways has recently been unravelled, in that key HR proteins such as the RAD51 recombinase and the tumour suppressors BRCA1 and BRCA2 also play important roles in ICL repair. Consistent with this, rare patient mutations in these HR genes cause FA pathologies and have been assigned FA complementation groups. Here, we focus on the clinical and mechanistic implications of the connection between these two cancer susceptibility syndromes and on how these two molecular pathways of DNA replication and repair interact functionally to prevent genomic instability.  相似文献   

8.
DNA damage of any type is threatening for a cell. If lesions are left unrepaired, genomic instability can arise, faithful transmission of genetic information is greatly compromised eventually leading the cell to undergo apoptosis or carcinogenesis. In order to access/detect and repair these damages, repair factors must circumvent the natural repressive barrier of chromatin. This review will present recent progress showing the intricate link between chromatin, its remodeling and the DNA repair process. Several studies demonstrated that one of the first events following specific types of DNA damage is the phosphorylation of histone H2A. This mark or the damage itself are responsible for the association of chromatin-modifying complexes near damaged DNA. These complexes are able to change the chromatin structure around the wounded DNA in order to allow the repair machinery to gain access and repair the lesion. Chromatin modifiers include ATP-dependent remodelers such as SWI/SNF and Rad54 as well as histone acetyltransferases (HATs) like SAGA/NuA4-related complexes and p300/CBP, which have been shown to facilitate DNA accessibility and repair in different pathways leading to the maintenance of genome integrity.  相似文献   

9.
Modulation of chromatin templates in response to cellular cues, including DNA damage, relies heavily on the post-translation modification of histones. Numerous types of histone modifications including phosphorylation, methylation, acetylation, and ubiquitylation occur on specific histone residues in response to DNA damage. These histone marks regulate both the structure and function of chromatin, allowing for the transition between chromatin states that function in undamaged condition to those that occur in the presence of DNA damage. Histone modifications play well-recognized roles in sensing, processing, and repairing damaged DNA to ensure the integrity of genetic information and cellular homeostasis. This review highlights our current understanding of histone modifications as they relate to DNA damage responses (DDRs) and their involvement in genome maintenance, including the potential targeting of histone modification regulators in cancer, a disease that exhibits both epigenetic dysregulation and intrinsic DNA damage.  相似文献   

10.
11.
Bray CM  West CE 《The New phytologist》2005,168(3):511-528
As obligate phototrophs, plants harness energy from sunlight to split water, producing oxygen and reducing power. This lifestyle exposes plants to particularly high levels of genotoxic stress that threatens genomic integrity, leading to mutation, developmental arrest and cell death. Plants, which with algae are the only photosynthetic eukaryotes, have evolved very effective pathways for DNA damage signalling and repair, and this review summarises our current understanding of these processes in the responses of plants to genotoxic stress. We also identify how the use of new and emerging technologies can complement established physiological and ecological studies to progress the application of this knowledge in biotechnology.  相似文献   

12.
Sperm function and quality are primary determinants of male reproductive performance and hence fitness. The presence of rival males has been shown to affect ejaculate and sperm traits in a wide range of taxa. However, male physiological conditions may not only affect sperm phenotypic traits but also their genetic and epigenetic signatures, affecting the fitness of the resulting offspring. We investigated the effects of male‐male competition on sperm quality using TUNEL assays and geometric morphometrics in the zebrafish, Danio rerio. We found that the sperm produced by males exposed to high male–male competition had smaller heads but larger midpiece and flagellum than sperm produced by males under low competition. Head and flagella also appeared less sensitive to the osmotic stress induced by activation with water. In addition, more sperm showed signals of DNA damage in ejaculates of males under high competition. These findings suggest that the presence of a rival male may have positive effects on sperm phenotypic traits but negative effects on sperm DNA integrity. Overall, males facing the presence of rival males may produce faster swimming and more competitive sperm but this may come at a cost for the next generation.  相似文献   

13.
  1. Download : Download high-res image (156KB)
  2. Download : Download full-size image
  相似文献   

14.
Nucleoside analogs are frequently used to label newly synthesized DNA. These analogs are toxic in many cells, with the exception of the budding yeast. We show that Schizosaccharomyces pombe behaves similarly to metazoans in response to analogs 5-bromo-2′-deoxyuridine (BrdU) and 5-ethynyl-2′-deoxyuridine (EdU). Incorporation causes DNA damage that activates the damage checkpoint kinase Chk1 and sensitizes cells to UV light and other DNA-damaging drugs. Replication checkpoint mutant cds1Δ shows increased DNA damage response after exposure. Finally, we demonstrate that the response to BrdU is influenced by the ribonucleotide reductase inhibitor, Spd1, suggesting that BrdU causes dNTP pool imbalance in fission yeast, as in metazoans. Consistent with this, we show that excess thymidine induces G1 arrest in wild-type fission yeast expressing thymidine kinase. Thus, fission yeast responds to nucleoside analogs similarly to mammalian cells, which has implications for their use in replication and damage research, as well as for dNTP metabolism.  相似文献   

15.
To cope with the devastating insults constantly inflicted to their genome by intrinsic and extrinsic DNA damaging sources, cells have evolved a sophisticated network of interconnected DNA caretaking mechanisms that will detect, signal and repair the lesions. Among the underlying molecular mechanisms that regulate these events, PARylation catalyzed by Poly(ADP-ribose) polymerases (PARPs), appears as one of the earliest post-translational modification at the site of the lesion that is known to elicit recruitment and regulation of many DNA damage response proteins.  相似文献   

16.
17.
ABSTRACT

Carefully balanced deoxynucleoside triphosphate (dNTP) pools are essential for both nuclear and mitochondrial genome replication and repair. Two synthetic pathways operate in cells to produce dNTPs, e.g., the de novo and the salvage pathways. The key regulatory enzymes for de novo synthesis are ribonucleotide reductase (RNR) and thymidylate synthase (TS), and this process is considered to be cytosolic. The salvage pathway operates both in the cytosol (TK1 and dCK) and the mitochondria (TK2 and dGK). Mitochondrial dNTP pools are separated from the cytosolic ones owing to the double membrane structure of the mitochondria, and are formed by the salvage enzymes TK2 and dGK together with NMPKs and NDPK in postmitotic tissues, while in proliferating cells the mitochondrial dNTPs are mainly imported from the cytosol produced by the cytosolic pathways. Imbalanced mitochondrial dNTP pools lead to mtDNA depletion and/or deletions resulting in serious mitochondrial diseases. The mtDNA depletion syndrome is caused by deficiencies not only in enzymes in dNTP synthesis (TK2, dGK, p53R2, and TP) and mtDNA replication (mtDNA polymerase and twinkle helicase), but also in enzymes in other metabolic pathways such as SUCLA2 and SUCLG1, ABAT and MPV17. Basic questions are why defects in these enzymes affect dNTP synthesis and how important is mitochondrial nucleotide synthesis in the whole cell/organism perspective? This review will focus on recent studies on purine and pyrimidine metabolism, which have revealed several important links that connect mitochondrial nucleotide metabolism with amino acids, glucose, and fatty acid metabolism.  相似文献   

18.
To explore the function of VIG-1 in Caenorhabditis elegans, we analyzed the phenotypes of two vig-1 deletion mutants: vig-1(tm3383) and vig-1(ok2536). Both vig-1 mutants exhibited phenotypes associated with genome instability, such as a high incidence of males (Him) and increased embryonic lethality. These phenotypes became more evident in succeeding generations, implying that the germline of vig-1 accumulates DNA damage over generations. To examine whether vig-1 causes a defect in the DNA damage response, we treated worms with UV or camptothecin, a specific topoisomerase I inhibitor. We observed that the embryonic survival of the vig-1 mutants was reduced compared with that of the wild-type worms. Our results thus suggest that VIG-1 is required for maintaining genome stability in response to endogenous and exogenous genotoxic stresses.  相似文献   

19.
Summary Five somatic hybrids between Brassica campestris and B. oleracea were obtained. Molecular, morphological and cytological information all suggest that the resynthesized B. napus plants were hybrids. All five plants were diploid (2n=38) and had mainly bivalents at meiosis. Seedset was low after selfing but normal after crossing with B. napus. Molecular proof of the hybrid nature of these plants was obtained by hybridization of a rDNA repeat to total DNA. Analysis of chloroplast DNA restriction patterns revealed that all hybrids had chloroplasts identical to the B. oleracea parent. The analysis of mitochondrial DNA indicated that three hybrids had restriction patterns identical to those of B. campestris, and the other two had restriction patterns similar to those of B. oleracea. The 11.3 kb plasmid present in mitochondria of the B. campestris parent was also found in mitochondria of all five hybrids. This suggests that the plasmid from a B. campestris type of mitochondria was transferred into mitochondria of a B. oleracea type.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号