首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This special issue of Molecular Microbiology marks the 25th anniversary of the discovery of the extracytoplasmic function (ECF) σ factors, proteins that subsequently emerged as the largest group of alternative σ factors and one of the three major pillars of signal transduction in bacteria, alongside one‐ and two‐component systems. A single bacterial genome can encode > 100 ECF σ factors, and combined with their cognate anti‐σ factors, they represent a modular design that primarily functions in transmembrane signal transduction. Here, we first describe the immediate events that led to the 1994 publication in the Proceeding of the National Academy of Sciences USA, and then set them in the broader context of key events in the history of σ biology research.  相似文献   

2.
3.
4.
5.
Extracytoplasmic function (ECF) σ factors are critical players in signal transduction networks involved in bacterial response to environmental changes. The Myxococcus xanthus genome reveals ~45 putative ECF‐σ factors, but for the overwhelming majority, the specific signals or mechanisms for selective activation and regulation remain unknown. One well‐studied ECF‐σ, CarQ, binds to its anti‐σ, CarR, and is inactive in the dark but drives its own expression from promoter PQRS on illumination. This requires the CarD/CarG complex, the integration host factor (IHF) and a specific CarD‐binding site upstream of PQRS. Here, we show that DdvS, a previously uncharacterized ECF‐σ, activates its own expression in a CarD/CarG‐dependent manner but is inhibited when specifically bound to the N‐terminal zinc‐binding anti‐σ domain of its cognate anti‐σ, DdvA. Interestingly, we find that the autoregulatory action of 11 other ECF‐σ factors studied here depends totally or partially on CarD/CarG but not IHF. In silico analysis revealed possible CarD‐binding sites that may be involved in direct regulation by CarD/CarG of target promoter activity. CarD/CarG‐linked ECF‐σ regulation likely recurs in other myxobacteria with CarD/CarG orthologous pairs and could underlie, at least in part, the global regulatory effect of the complex on M. xanthus gene expression.  相似文献   

6.
Activation of human factor V by factor Xa and thrombin   总被引:12,自引:0,他引:12  
D D Monkovic  P B Tracy 《Biochemistry》1990,29(5):1118-1128
The activation of human factor V by factor Xa and thrombin was studied by functional assessment of cofactor activity and sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by either autoradiography of 125I-labeled factor V activation products or Western blot analyses of unlabeled factor V activation products. Cofactor activity was measured by the ability of the factor V/Va peptides to support the activation of prothrombin. The factor Xa catalyzed cleavage of factor V was observed to be time, phospholipid, and calcium ion dependent, yielding a cofactor with activity equal to that of thrombin-activated factor V (factor Va). The cleavage pattern differed markedly from the one observed in the bovine system. The factor Xa activated factor V subunits expressing cofactor activity were isolated and found to consist of peptides of Mr 220,000 and 105,000. Although thrombin cleaved the Mr 220,000 peptide to yield peptides previously shown to be products of thrombin activation, cofactor activity did not increase. N-Terminal sequence analysis confirmed that both factor Xa and thrombin cleave factor V at the same bond to generate the Mr 220,000 peptide. The factor Xa dependent functional assessment of 125I-labeled factor V coupled with densitometric analyses of the cleavage products indicated that the cofactor activity of factor Xa activated factor V closely paralleled the appearance of the Mr 220,000 peptide. This observation facilitated the study of the kinetics of factor V activation by allowing the activation of factor V to be monitored by the appearance of the Mr 220,000 peptide (factor Xa activation) or the Mr 105,000 peptide (thrombin activation). Factor Xa catalyzed activation of factor V obeyed Michaelis-Menten kinetics and was characterized by a Km of 10.4 nM, a kcat of 2.6 min-1, and a catalytic efficiency (kcat/Km) of 4.14 X 10(6) M-1 s-1. The thrombin-catalyzed activation of factor V was characterized by a Km of 71.7 nM, a kcat of 14.0 min-1, and a catalytic efficiency of 3.26 X 10(6) M-1 s-1. This indicates that factor Xa is as efficient an enzyme toward factor V as thrombin.  相似文献   

7.
Activation of coagulation factor V by calcium-dependent proteinase   总被引:1,自引:0,他引:1  
Factor V is a key coagulation cofactor, regulating the rate of Factor Xa-catalyzed prothrombin conversion. Activation of Factor V markedly accelerates coagulation. This study describes a new class of Factor V activators, sulfhydryl proteinases. Of the enzymes studied, calcium-dependent proteinase was the most effective activator. Activation of Factor V by this enzyme was associated with cleavage of 125I-labeled Factor V to peptides distinct from those generated by previously described activators. Calcium-dependent proteinase-activated Factor Va peptides with molecular weights of 114,000 and 93,000 bound both to Factor Xa and to cultured endothelial cells. Calcium-dependent proteinase was identified in vascular endothelial cells, a tissue that also synthesizes Factor V. These findings suggest a previously unknown mechanism for cellular regulation of coagulation.  相似文献   

8.
In Bacillus subtilis, the extracytoplasmic function (ECF) σ factors σM, σW and σX all contribute to resistance against lantibiotics. Nisin, a model lantibiotic, has a dual mode of action: it inhibits cell wall synthesis by binding lipid II, and this complex also forms pores in the cytoplasmic membrane. These activities can be separated in a nisin hinge‐region variant (N20P M21P) that binds lipid II, but no longer permeabilizes membranes. The major contribution of σM to nisin resistance is expression of ltaSa, encoding a stress‐activated lipoteichoic acid synthase, and σX functions primarily by activation of the dlt operon controlling d ‐alanylation of teichoic acids. Together, σM and σX regulate cell envelope structure to decrease access of nisin to its lipid II target. In contrast, σW is principally involved in protection against membrane permeabilization as it provides little protection against the nisin hinge region variant. σW contributes to nisin resistance by regulation of a signal peptide peptidase (SppA), phage shock proteins (PspA and YvlC, a PspC homologue) and tellurite resistance related proteins (YceGHI). These defensive mechanisms are also effective against other lantibiotics such as mersacidin, gallidermin and subtilin and comprise an important subset of the intrinsic antibiotic resistome of B. subtilis.  相似文献   

9.
10.
11.
The identification of immunogenic regions on the surface of antigens, which are able to stimulate an immune response, is a major challenge for the design of new vaccines. Computational immunology aims at predicting such regions—in particular B‐cell epitopes—but is far from being reliably applicable on a large scale. To gain understanding into the factors that contribute to the antigen–antibody affinity and specificity, we perform a detailed analysis of the amino acid composition and secondary structure of antigen and antibody surfaces, and of the interactions that stabilize the complexes, in comparison with the composition and interactions observed in other heterodimeric protein interfaces. We make a distinction between linear and conformational B‐cell epitopes, according to whether they consist of successive residues along the polypeptide chain or not. The antigen–antibody interfaces were shown to differ from other protein–protein interfaces by their smaller size, their secondary structure with less helices and more loops, and the interactions that stabilize them: more H‐bond, cation–π, amino–π, and π–π interactions, and less hydrophobic packing; linear and conformational epitopes can clearly be distinguished. Often, chains of successive interactions, called cation/amino–π and π–π chains, are formed. The amino acid composition differs significantly between the interfaces: antigen–antibody interfaces are less aliphatic and more charged, polar and aromatic than other heterodimeric protein interfaces. Moreover, paratopes and epitopes—albeit to a lesser extent—have amino acid compositions that are distinct from general protein surfaces. This specificity holds promise for improving B‐cell epitope prediction. Proteins 2014; 82:1734–1746. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Progression of Bacillus subtilis through a series of morphological changes is driven by a cascade of sigma (σ) factors and results in formation of a spore. Recent work has provided new insights into the location and function of proteins that control σ factor activity, and has suggested that multiple mechanisms allow one σ factor to replace another in the cascade.  相似文献   

13.
The Ramachandran plot distributions of nonglycine residues from experimentally determined structures are routinely described as grouping into one of six major basins: β, PII, α, αL, ξ and γ'. Recent work describing the most common conformations adopted by pairs of residues in folded proteins [i.e., (φ,ψ)2‐motifs] showed that commonly described major basins are not true single thermodynamic basins, but are composed of distinct subregions that are associated with various conformations of either the preceding or following neighbor residue. Here, as documentation of the extent to which the conformational preferences of a central residue are influenced by the conformations of its two neighbors, we present a set of φ,ψ‐plots that are delimited simultaneously by the φ,ψ‐angles of its neighboring residues on both sides. The level of influence seen here is typically greater than the influence associated with considering the identities of neighboring residues, implying that the use of this heretofore untapped information can improve the accuracy of structure prediction algorithms and low resolution protein structure refinement.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号